PROud - a gamification framework based on programming exercises usage data

Bibliographic Details
Main Author: Queirós, Ricardo
Publication Date: 2019
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.22/14792
Summary: Solving programming exercises is the best way to promote practice in computer programming courses and, hence, to learn a programming language. Meanwhile, programming courses continue to have an high rate of failures and dropouts. The main reasons are related with the inherent domain complexity, the teaching methodologies, and the absence of automatic systems with features such as intelligent authoring, profile-based exercise sequencing, content adaptation, and automatic evaluation on the student’s resolution. At the same time, gamification is being used as an approach to engage learners’ motivations. Despite its success, its implementation is still complex and based on ad-hoc and proprietary solutions. This paper presents PROud as a framework to inject gamification features in computer programming learning environments based on the usage data from programming exercises. This data can be divided into two categories: generic data produced by the learning environment—such as, the number of attempts and the duration that the students took to solve a specific exercise—or code-specific data produced by the assessment tool—such as, code size, use memory, or keyword detection. The data is gathered in cloud storage and can be consumed by the learning environment through the use of a client library that communicates with the server through an established Application Programming Interface (API). With the fetched data, the learning environment can generate new gamification assets (e.g., leaderboards, quests, levels) or enrich content adaptations and recommendations in the inner components such as the sequencing tools. The framework is evaluated on its usefulness in the creation of a gamification asset to present dynamic statistics on specific exercises.
id RCAP_801bbd8bc005e4ac87a5ea4669807b9e
oai_identifier_str oai:recipp.ipp.pt:10400.22/14792
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling PROud - a gamification framework based on programming exercises usage dataCloud gamificationWeb servicesComputer programmingSolving programming exercises is the best way to promote practice in computer programming courses and, hence, to learn a programming language. Meanwhile, programming courses continue to have an high rate of failures and dropouts. The main reasons are related with the inherent domain complexity, the teaching methodologies, and the absence of automatic systems with features such as intelligent authoring, profile-based exercise sequencing, content adaptation, and automatic evaluation on the student’s resolution. At the same time, gamification is being used as an approach to engage learners’ motivations. Despite its success, its implementation is still complex and based on ad-hoc and proprietary solutions. This paper presents PROud as a framework to inject gamification features in computer programming learning environments based on the usage data from programming exercises. This data can be divided into two categories: generic data produced by the learning environment—such as, the number of attempts and the duration that the students took to solve a specific exercise—or code-specific data produced by the assessment tool—such as, code size, use memory, or keyword detection. The data is gathered in cloud storage and can be consumed by the learning environment through the use of a client library that communicates with the server through an established Application Programming Interface (API). With the fetched data, the learning environment can generate new gamification assets (e.g., leaderboards, quests, levels) or enrich content adaptations and recommendations in the inner components such as the sequencing tools. The framework is evaluated on its usefulness in the creation of a gamification asset to present dynamic statistics on specific exercises.MDPIREPOSITÓRIO P.PORTOQueirós, Ricardo2019-11-07T15:31:28Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/14792eng10.3390/info10020054info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:00:05Zoai:recipp.ipp.pt:10400.22/14792Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:24:56.399739Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv PROud - a gamification framework based on programming exercises usage data
title PROud - a gamification framework based on programming exercises usage data
spellingShingle PROud - a gamification framework based on programming exercises usage data
Queirós, Ricardo
Cloud gamification
Web services
Computer programming
title_short PROud - a gamification framework based on programming exercises usage data
title_full PROud - a gamification framework based on programming exercises usage data
title_fullStr PROud - a gamification framework based on programming exercises usage data
title_full_unstemmed PROud - a gamification framework based on programming exercises usage data
title_sort PROud - a gamification framework based on programming exercises usage data
author Queirós, Ricardo
author_facet Queirós, Ricardo
author_role author
dc.contributor.none.fl_str_mv REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Queirós, Ricardo
dc.subject.por.fl_str_mv Cloud gamification
Web services
Computer programming
topic Cloud gamification
Web services
Computer programming
description Solving programming exercises is the best way to promote practice in computer programming courses and, hence, to learn a programming language. Meanwhile, programming courses continue to have an high rate of failures and dropouts. The main reasons are related with the inherent domain complexity, the teaching methodologies, and the absence of automatic systems with features such as intelligent authoring, profile-based exercise sequencing, content adaptation, and automatic evaluation on the student’s resolution. At the same time, gamification is being used as an approach to engage learners’ motivations. Despite its success, its implementation is still complex and based on ad-hoc and proprietary solutions. This paper presents PROud as a framework to inject gamification features in computer programming learning environments based on the usage data from programming exercises. This data can be divided into two categories: generic data produced by the learning environment—such as, the number of attempts and the duration that the students took to solve a specific exercise—or code-specific data produced by the assessment tool—such as, code size, use memory, or keyword detection. The data is gathered in cloud storage and can be consumed by the learning environment through the use of a client library that communicates with the server through an established Application Programming Interface (API). With the fetched data, the learning environment can generate new gamification assets (e.g., leaderboards, quests, levels) or enrich content adaptations and recommendations in the inner components such as the sequencing tools. The framework is evaluated on its usefulness in the creation of a gamification asset to present dynamic statistics on specific exercises.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-07T15:31:28Z
2019
2019-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/14792
url http://hdl.handle.net/10400.22/14792
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/info10020054
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600527596781568