Sobolev homeomorphisms are dense in volume preserving automorphisms
| Main Author: | |
|---|---|
| Publication Date: | 2019 |
| Other Authors: | , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.2/13847 |
Summary: | In this paper we prove a weak version of Lusin’s theorem for the space of Sobolev-(1,p) volume preserving homeomor- phisms on closed and connected n-dimensional manifolds, n ≥ 3, for p < n − 1. We also prove that if p > n this result is not true. More precisely, we obtain the density of Sobolev-(1,p) homeomorphisms in the space of volume pre- serving automorphisms, for the weak topology. Furthermore, the regularization of an automorphism in a uniform ball cen- tered at the identity can be done in a Sobolev-(1, p) ball with the same radius centered at the identity. |
| id |
RCAP_7fa9a28a4fb155fa60dc5b0dec5ef555 |
|---|---|
| oai_identifier_str |
oai:repositorioaberto.uab.pt:10400.2/13847 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Sobolev homeomorphisms are dense in volume preserving automorphismsLusin theoremVolume preservingSobolev homeomorphismIn this paper we prove a weak version of Lusin’s theorem for the space of Sobolev-(1,p) volume preserving homeomor- phisms on closed and connected n-dimensional manifolds, n ≥ 3, for p < n − 1. We also prove that if p > n this result is not true. More precisely, we obtain the density of Sobolev-(1,p) homeomorphisms in the space of volume pre- serving automorphisms, for the weak topology. Furthermore, the regularization of an automorphism in a uniform ball cen- tered at the identity can be done in a Sobolev-(1, p) ball with the same radius centered at the identity.ElsevierRepositório AbertoAzevedo, AssisAzevedo, DavideBessa, MárioTorres, Maria Joana2023-05-25T12:02:06Z20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.2/13847eng0022-123610.1016/j.jfa.2018.10.008info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T09:32:57Zoai:repositorioaberto.uab.pt:10400.2/13847Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:01:33.643567Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Sobolev homeomorphisms are dense in volume preserving automorphisms |
| title |
Sobolev homeomorphisms are dense in volume preserving automorphisms |
| spellingShingle |
Sobolev homeomorphisms are dense in volume preserving automorphisms Azevedo, Assis Lusin theorem Volume preserving Sobolev homeomorphism |
| title_short |
Sobolev homeomorphisms are dense in volume preserving automorphisms |
| title_full |
Sobolev homeomorphisms are dense in volume preserving automorphisms |
| title_fullStr |
Sobolev homeomorphisms are dense in volume preserving automorphisms |
| title_full_unstemmed |
Sobolev homeomorphisms are dense in volume preserving automorphisms |
| title_sort |
Sobolev homeomorphisms are dense in volume preserving automorphisms |
| author |
Azevedo, Assis |
| author_facet |
Azevedo, Assis Azevedo, Davide Bessa, Mário Torres, Maria Joana |
| author_role |
author |
| author2 |
Azevedo, Davide Bessa, Mário Torres, Maria Joana |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Repositório Aberto |
| dc.contributor.author.fl_str_mv |
Azevedo, Assis Azevedo, Davide Bessa, Mário Torres, Maria Joana |
| dc.subject.por.fl_str_mv |
Lusin theorem Volume preserving Sobolev homeomorphism |
| topic |
Lusin theorem Volume preserving Sobolev homeomorphism |
| description |
In this paper we prove a weak version of Lusin’s theorem for the space of Sobolev-(1,p) volume preserving homeomor- phisms on closed and connected n-dimensional manifolds, n ≥ 3, for p < n − 1. We also prove that if p > n this result is not true. More precisely, we obtain the density of Sobolev-(1,p) homeomorphisms in the space of volume pre- serving automorphisms, for the weak topology. Furthermore, the regularization of an automorphism in a uniform ball cen- tered at the identity can be done in a Sobolev-(1, p) ball with the same radius centered at the identity. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z 2023-05-25T12:02:06Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.2/13847 |
| url |
http://hdl.handle.net/10400.2/13847 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0022-1236 10.1016/j.jfa.2018.10.008 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833599037580771328 |