Interaction between Gold Nanoparticles and Blood Proteins to define Disease states

Bibliographic Details
Main Author: Peitinho, David Jorge Ligeiro
Publication Date: 2018
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/127585
Summary: One of the most studied subjects in Bionanotechnology is the application of Gold Nanoparticles (AuNPs). These have unique optical and chemical properties and interact with proteins and other biomolecules forming dynamic (Protein-Corona) layers at the surface. These protein coronas are responsible for increased in vivo biocompatibility, and can be studied by multiple techniques, tracking for disease-specific protein profiles. In this work, 15 nm AuNPs were synthesized by the Turkevich method, and 40 nm AuNPs were provided. Sample concentration and size were determined by UV-Vis spectroscopy, exploiting the Surface Plasmon Resonance (SPR) effect. Successful surface functionalization was performed with the alkanethiol 11-mercaptoundecanoic acid (MUA) or a pentapeptide (CALNN), maintaining a negative global net charge and increasing overall stability. Bionanoconjugation with Bovine Serum Albumin (BSA) and Fibrinogen (Fib), with molecular weights of 66 and 340 kDa respectively, was performed and characterized by Agarose Gel Electrophoresis (AGE). Electrophoretic mobility was determined using image and video analysis performed by the eReuss software. Adsorption affinity constant were determined using the conjugation curves obtained in the AGE results, fitted using the Langmuir Isotherm, and resulted in (1.5 ± 0.1) x 10-2 (AuNP-MUA) for BSA conjugation, and (51.2 ± 4.7) x 10-2 (AuNP-CALNN) and (34.3 ± 1.2) x 10-2 (AuNP-MUA) for Fib conjugation. Bioconjugation of AuNP-CALNN with BSA was inconclusive. Competitive scenarios of a protein mixture favored Fib adsorption over BSA. Fib conjugation of 40 nm AuNPs showed multiple adsorption constants of (3 ± 0.7) x 10-2 and (9.7 ± 2.2) x 10-4 respectively. The eReuss software proved to be a powerful tool to analyze image results from electrophoretic runs, and the video analysis feature gives way to an innovative way of analyzing these experiments and extract further information on the Protein Corona stability. Fergusson Plot analysis and Light scattering techniques (DLS, NTA and ELS) were performed to determine hydrodynamic sizes and Zeta-Potential of bionanoconjugated samples.
id RCAP_7d9167fceb2677e332da7ec787e9f0ef
oai_identifier_str oai:run.unl.pt:10362/127585
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Interaction between Gold Nanoparticles and Blood Proteins to define Disease statesGold nanoparticlesSurface Plasmon ResonanceElectrophoresisLight ScatteringProtein-CoronaPlasma ProteinsDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasOne of the most studied subjects in Bionanotechnology is the application of Gold Nanoparticles (AuNPs). These have unique optical and chemical properties and interact with proteins and other biomolecules forming dynamic (Protein-Corona) layers at the surface. These protein coronas are responsible for increased in vivo biocompatibility, and can be studied by multiple techniques, tracking for disease-specific protein profiles. In this work, 15 nm AuNPs were synthesized by the Turkevich method, and 40 nm AuNPs were provided. Sample concentration and size were determined by UV-Vis spectroscopy, exploiting the Surface Plasmon Resonance (SPR) effect. Successful surface functionalization was performed with the alkanethiol 11-mercaptoundecanoic acid (MUA) or a pentapeptide (CALNN), maintaining a negative global net charge and increasing overall stability. Bionanoconjugation with Bovine Serum Albumin (BSA) and Fibrinogen (Fib), with molecular weights of 66 and 340 kDa respectively, was performed and characterized by Agarose Gel Electrophoresis (AGE). Electrophoretic mobility was determined using image and video analysis performed by the eReuss software. Adsorption affinity constant were determined using the conjugation curves obtained in the AGE results, fitted using the Langmuir Isotherm, and resulted in (1.5 ± 0.1) x 10-2 (AuNP-MUA) for BSA conjugation, and (51.2 ± 4.7) x 10-2 (AuNP-CALNN) and (34.3 ± 1.2) x 10-2 (AuNP-MUA) for Fib conjugation. Bioconjugation of AuNP-CALNN with BSA was inconclusive. Competitive scenarios of a protein mixture favored Fib adsorption over BSA. Fib conjugation of 40 nm AuNPs showed multiple adsorption constants of (3 ± 0.7) x 10-2 and (9.7 ± 2.2) x 10-4 respectively. The eReuss software proved to be a powerful tool to analyze image results from electrophoretic runs, and the video analysis feature gives way to an innovative way of analyzing these experiments and extract further information on the Protein Corona stability. Fergusson Plot analysis and Light scattering techniques (DLS, NTA and ELS) were performed to determine hydrodynamic sizes and Zeta-Potential of bionanoconjugated samples.Uma das mais estudadas áreas em Bionanotecnologia é a aplicação de Nanopartículas de Ouro (AuNPs). Estas possuem propriedades óticas e químicas únicas e interagem com proteínas e outras biomoléculas, formando camadas dinâmicas a superfícies (Coroa Proteica). Estas coroas são responsáveis pelo aumento da biocompatibilidade in vivo, e podem ser estudadas com múltiplas técnicas, podendo identificar perfis de doença específicos. Neste trabalho, AuNPs de 15 nm foram sintetizadas pelo método de Turkevich, e AuNPs de 40 nm foram fornecidas. Concentração e tamanho das nanopartículas foram determinadas por espectroscopia UV-Vis, usando o efeito de Ressonância Plasmónica de Superfície (SPR). Funcionalização da superfície foi executada com adição de ácido 11-mercaptoundecanoico (MUA) e um penta-péptido (CALNN), mantendo a carga global negative e aumentando a estabilidade. Bioconjugação com Albumina (BSA) e Fibrinogénio (Fib) de soro bovino, com pesos moleculares de 66 e 340 kDa, respetivamente, foi executada e caracterizada por Eletroforese em Gel de Agarose (AGE). Mobilidade eletroforética foi determinada usando análise de imagem e vídeo com o programa eReuss. As constantes de afinidade de adsorção foram determinadas usando as curvas de conjugação pelos resultados de AGE, com a equação do modelo de adsorção de Langmuir, e resultou em (1.5 ± 0.1)x 10-2 (AuNP-MUA) para a conjugação com BSA, e (51.2 ± 4.7)x 10-2 (AuNP-CALNN) e (34.3 ± 1.2) x 10-2 (AuNP-MUA) para a conjugação com Fib. Bioconjugação de AuNP-CALNN com BSA foi inconclusiva. Cenários de competição numa mistura de proteínas favoreceu o Fib sobre a BSA. A conjugação de AuNPs de 40 nm mostrou múltiplas constantes de adsorção de (3 ± 0.7) x 10-2 e (9.7 ± 2.2) x 10-4 respetivamente. O programa eReuss provou ser uma poderosa ferramenta de análise de imagens das corridas eletroforéticas, e a componente de análise de vídeo sugere uma forma inovadora de analisar estas experiências e extrair informação adicional sobre a estabilidade da Coroa Proteica. A análise de Fergusson e técnicas de dispersão de luz (DLS, NTA e ELS) foram executadas para determinar o tamanho hidrodinâmico e o Potencial-Zeta de bionanoconjugados.Tavares, JoséKrippahl, LudwigRUNPeitinho, David Jorge Ligeiro2021-11-12T13:55:09Z2018-112018-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/127585enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:57:08Zoai:run.unl.pt:10362/127585Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:28:08.180312Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Interaction between Gold Nanoparticles and Blood Proteins to define Disease states
title Interaction between Gold Nanoparticles and Blood Proteins to define Disease states
spellingShingle Interaction between Gold Nanoparticles and Blood Proteins to define Disease states
Peitinho, David Jorge Ligeiro
Gold nanoparticles
Surface Plasmon Resonance
Electrophoresis
Light Scattering
Protein-Corona
Plasma Proteins
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Interaction between Gold Nanoparticles and Blood Proteins to define Disease states
title_full Interaction between Gold Nanoparticles and Blood Proteins to define Disease states
title_fullStr Interaction between Gold Nanoparticles and Blood Proteins to define Disease states
title_full_unstemmed Interaction between Gold Nanoparticles and Blood Proteins to define Disease states
title_sort Interaction between Gold Nanoparticles and Blood Proteins to define Disease states
author Peitinho, David Jorge Ligeiro
author_facet Peitinho, David Jorge Ligeiro
author_role author
dc.contributor.none.fl_str_mv Tavares, José
Krippahl, Ludwig
RUN
dc.contributor.author.fl_str_mv Peitinho, David Jorge Ligeiro
dc.subject.por.fl_str_mv Gold nanoparticles
Surface Plasmon Resonance
Electrophoresis
Light Scattering
Protein-Corona
Plasma Proteins
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Gold nanoparticles
Surface Plasmon Resonance
Electrophoresis
Light Scattering
Protein-Corona
Plasma Proteins
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description One of the most studied subjects in Bionanotechnology is the application of Gold Nanoparticles (AuNPs). These have unique optical and chemical properties and interact with proteins and other biomolecules forming dynamic (Protein-Corona) layers at the surface. These protein coronas are responsible for increased in vivo biocompatibility, and can be studied by multiple techniques, tracking for disease-specific protein profiles. In this work, 15 nm AuNPs were synthesized by the Turkevich method, and 40 nm AuNPs were provided. Sample concentration and size were determined by UV-Vis spectroscopy, exploiting the Surface Plasmon Resonance (SPR) effect. Successful surface functionalization was performed with the alkanethiol 11-mercaptoundecanoic acid (MUA) or a pentapeptide (CALNN), maintaining a negative global net charge and increasing overall stability. Bionanoconjugation with Bovine Serum Albumin (BSA) and Fibrinogen (Fib), with molecular weights of 66 and 340 kDa respectively, was performed and characterized by Agarose Gel Electrophoresis (AGE). Electrophoretic mobility was determined using image and video analysis performed by the eReuss software. Adsorption affinity constant were determined using the conjugation curves obtained in the AGE results, fitted using the Langmuir Isotherm, and resulted in (1.5 ± 0.1) x 10-2 (AuNP-MUA) for BSA conjugation, and (51.2 ± 4.7) x 10-2 (AuNP-CALNN) and (34.3 ± 1.2) x 10-2 (AuNP-MUA) for Fib conjugation. Bioconjugation of AuNP-CALNN with BSA was inconclusive. Competitive scenarios of a protein mixture favored Fib adsorption over BSA. Fib conjugation of 40 nm AuNPs showed multiple adsorption constants of (3 ± 0.7) x 10-2 and (9.7 ± 2.2) x 10-4 respectively. The eReuss software proved to be a powerful tool to analyze image results from electrophoretic runs, and the video analysis feature gives way to an innovative way of analyzing these experiments and extract further information on the Protein Corona stability. Fergusson Plot analysis and Light scattering techniques (DLS, NTA and ELS) were performed to determine hydrodynamic sizes and Zeta-Potential of bionanoconjugated samples.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
2018-11-01T00:00:00Z
2021-11-12T13:55:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/127585
url http://hdl.handle.net/10362/127585
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596716561989632