Interaction between Gold Nanoparticles and Blood Proteins to define Disease states
Main Author: | |
---|---|
Publication Date: | 2018 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/127585 |
Summary: | One of the most studied subjects in Bionanotechnology is the application of Gold Nanoparticles (AuNPs). These have unique optical and chemical properties and interact with proteins and other biomolecules forming dynamic (Protein-Corona) layers at the surface. These protein coronas are responsible for increased in vivo biocompatibility, and can be studied by multiple techniques, tracking for disease-specific protein profiles. In this work, 15 nm AuNPs were synthesized by the Turkevich method, and 40 nm AuNPs were provided. Sample concentration and size were determined by UV-Vis spectroscopy, exploiting the Surface Plasmon Resonance (SPR) effect. Successful surface functionalization was performed with the alkanethiol 11-mercaptoundecanoic acid (MUA) or a pentapeptide (CALNN), maintaining a negative global net charge and increasing overall stability. Bionanoconjugation with Bovine Serum Albumin (BSA) and Fibrinogen (Fib), with molecular weights of 66 and 340 kDa respectively, was performed and characterized by Agarose Gel Electrophoresis (AGE). Electrophoretic mobility was determined using image and video analysis performed by the eReuss software. Adsorption affinity constant were determined using the conjugation curves obtained in the AGE results, fitted using the Langmuir Isotherm, and resulted in (1.5 ± 0.1) x 10-2 (AuNP-MUA) for BSA conjugation, and (51.2 ± 4.7) x 10-2 (AuNP-CALNN) and (34.3 ± 1.2) x 10-2 (AuNP-MUA) for Fib conjugation. Bioconjugation of AuNP-CALNN with BSA was inconclusive. Competitive scenarios of a protein mixture favored Fib adsorption over BSA. Fib conjugation of 40 nm AuNPs showed multiple adsorption constants of (3 ± 0.7) x 10-2 and (9.7 ± 2.2) x 10-4 respectively. The eReuss software proved to be a powerful tool to analyze image results from electrophoretic runs, and the video analysis feature gives way to an innovative way of analyzing these experiments and extract further information on the Protein Corona stability. Fergusson Plot analysis and Light scattering techniques (DLS, NTA and ELS) were performed to determine hydrodynamic sizes and Zeta-Potential of bionanoconjugated samples. |
id |
RCAP_7d9167fceb2677e332da7ec787e9f0ef |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/127585 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Interaction between Gold Nanoparticles and Blood Proteins to define Disease statesGold nanoparticlesSurface Plasmon ResonanceElectrophoresisLight ScatteringProtein-CoronaPlasma ProteinsDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasOne of the most studied subjects in Bionanotechnology is the application of Gold Nanoparticles (AuNPs). These have unique optical and chemical properties and interact with proteins and other biomolecules forming dynamic (Protein-Corona) layers at the surface. These protein coronas are responsible for increased in vivo biocompatibility, and can be studied by multiple techniques, tracking for disease-specific protein profiles. In this work, 15 nm AuNPs were synthesized by the Turkevich method, and 40 nm AuNPs were provided. Sample concentration and size were determined by UV-Vis spectroscopy, exploiting the Surface Plasmon Resonance (SPR) effect. Successful surface functionalization was performed with the alkanethiol 11-mercaptoundecanoic acid (MUA) or a pentapeptide (CALNN), maintaining a negative global net charge and increasing overall stability. Bionanoconjugation with Bovine Serum Albumin (BSA) and Fibrinogen (Fib), with molecular weights of 66 and 340 kDa respectively, was performed and characterized by Agarose Gel Electrophoresis (AGE). Electrophoretic mobility was determined using image and video analysis performed by the eReuss software. Adsorption affinity constant were determined using the conjugation curves obtained in the AGE results, fitted using the Langmuir Isotherm, and resulted in (1.5 ± 0.1) x 10-2 (AuNP-MUA) for BSA conjugation, and (51.2 ± 4.7) x 10-2 (AuNP-CALNN) and (34.3 ± 1.2) x 10-2 (AuNP-MUA) for Fib conjugation. Bioconjugation of AuNP-CALNN with BSA was inconclusive. Competitive scenarios of a protein mixture favored Fib adsorption over BSA. Fib conjugation of 40 nm AuNPs showed multiple adsorption constants of (3 ± 0.7) x 10-2 and (9.7 ± 2.2) x 10-4 respectively. The eReuss software proved to be a powerful tool to analyze image results from electrophoretic runs, and the video analysis feature gives way to an innovative way of analyzing these experiments and extract further information on the Protein Corona stability. Fergusson Plot analysis and Light scattering techniques (DLS, NTA and ELS) were performed to determine hydrodynamic sizes and Zeta-Potential of bionanoconjugated samples.Uma das mais estudadas áreas em Bionanotecnologia é a aplicação de Nanopartículas de Ouro (AuNPs). Estas possuem propriedades óticas e químicas únicas e interagem com proteínas e outras biomoléculas, formando camadas dinâmicas a superfícies (Coroa Proteica). Estas coroas são responsáveis pelo aumento da biocompatibilidade in vivo, e podem ser estudadas com múltiplas técnicas, podendo identificar perfis de doença específicos. Neste trabalho, AuNPs de 15 nm foram sintetizadas pelo método de Turkevich, e AuNPs de 40 nm foram fornecidas. Concentração e tamanho das nanopartículas foram determinadas por espectroscopia UV-Vis, usando o efeito de Ressonância Plasmónica de Superfície (SPR). Funcionalização da superfície foi executada com adição de ácido 11-mercaptoundecanoico (MUA) e um penta-péptido (CALNN), mantendo a carga global negative e aumentando a estabilidade. Bioconjugação com Albumina (BSA) e Fibrinogénio (Fib) de soro bovino, com pesos moleculares de 66 e 340 kDa, respetivamente, foi executada e caracterizada por Eletroforese em Gel de Agarose (AGE). Mobilidade eletroforética foi determinada usando análise de imagem e vídeo com o programa eReuss. As constantes de afinidade de adsorção foram determinadas usando as curvas de conjugação pelos resultados de AGE, com a equação do modelo de adsorção de Langmuir, e resultou em (1.5 ± 0.1)x 10-2 (AuNP-MUA) para a conjugação com BSA, e (51.2 ± 4.7)x 10-2 (AuNP-CALNN) e (34.3 ± 1.2) x 10-2 (AuNP-MUA) para a conjugação com Fib. Bioconjugação de AuNP-CALNN com BSA foi inconclusiva. Cenários de competição numa mistura de proteínas favoreceu o Fib sobre a BSA. A conjugação de AuNPs de 40 nm mostrou múltiplas constantes de adsorção de (3 ± 0.7) x 10-2 e (9.7 ± 2.2) x 10-4 respetivamente. O programa eReuss provou ser uma poderosa ferramenta de análise de imagens das corridas eletroforéticas, e a componente de análise de vídeo sugere uma forma inovadora de analisar estas experiências e extrair informação adicional sobre a estabilidade da Coroa Proteica. A análise de Fergusson e técnicas de dispersão de luz (DLS, NTA e ELS) foram executadas para determinar o tamanho hidrodinâmico e o Potencial-Zeta de bionanoconjugados.Tavares, JoséKrippahl, LudwigRUNPeitinho, David Jorge Ligeiro2021-11-12T13:55:09Z2018-112018-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/127585enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:57:08Zoai:run.unl.pt:10362/127585Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:28:08.180312Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Interaction between Gold Nanoparticles and Blood Proteins to define Disease states |
title |
Interaction between Gold Nanoparticles and Blood Proteins to define Disease states |
spellingShingle |
Interaction between Gold Nanoparticles and Blood Proteins to define Disease states Peitinho, David Jorge Ligeiro Gold nanoparticles Surface Plasmon Resonance Electrophoresis Light Scattering Protein-Corona Plasma Proteins Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
title_short |
Interaction between Gold Nanoparticles and Blood Proteins to define Disease states |
title_full |
Interaction between Gold Nanoparticles and Blood Proteins to define Disease states |
title_fullStr |
Interaction between Gold Nanoparticles and Blood Proteins to define Disease states |
title_full_unstemmed |
Interaction between Gold Nanoparticles and Blood Proteins to define Disease states |
title_sort |
Interaction between Gold Nanoparticles and Blood Proteins to define Disease states |
author |
Peitinho, David Jorge Ligeiro |
author_facet |
Peitinho, David Jorge Ligeiro |
author_role |
author |
dc.contributor.none.fl_str_mv |
Tavares, José Krippahl, Ludwig RUN |
dc.contributor.author.fl_str_mv |
Peitinho, David Jorge Ligeiro |
dc.subject.por.fl_str_mv |
Gold nanoparticles Surface Plasmon Resonance Electrophoresis Light Scattering Protein-Corona Plasma Proteins Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
topic |
Gold nanoparticles Surface Plasmon Resonance Electrophoresis Light Scattering Protein-Corona Plasma Proteins Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
description |
One of the most studied subjects in Bionanotechnology is the application of Gold Nanoparticles (AuNPs). These have unique optical and chemical properties and interact with proteins and other biomolecules forming dynamic (Protein-Corona) layers at the surface. These protein coronas are responsible for increased in vivo biocompatibility, and can be studied by multiple techniques, tracking for disease-specific protein profiles. In this work, 15 nm AuNPs were synthesized by the Turkevich method, and 40 nm AuNPs were provided. Sample concentration and size were determined by UV-Vis spectroscopy, exploiting the Surface Plasmon Resonance (SPR) effect. Successful surface functionalization was performed with the alkanethiol 11-mercaptoundecanoic acid (MUA) or a pentapeptide (CALNN), maintaining a negative global net charge and increasing overall stability. Bionanoconjugation with Bovine Serum Albumin (BSA) and Fibrinogen (Fib), with molecular weights of 66 and 340 kDa respectively, was performed and characterized by Agarose Gel Electrophoresis (AGE). Electrophoretic mobility was determined using image and video analysis performed by the eReuss software. Adsorption affinity constant were determined using the conjugation curves obtained in the AGE results, fitted using the Langmuir Isotherm, and resulted in (1.5 ± 0.1) x 10-2 (AuNP-MUA) for BSA conjugation, and (51.2 ± 4.7) x 10-2 (AuNP-CALNN) and (34.3 ± 1.2) x 10-2 (AuNP-MUA) for Fib conjugation. Bioconjugation of AuNP-CALNN with BSA was inconclusive. Competitive scenarios of a protein mixture favored Fib adsorption over BSA. Fib conjugation of 40 nm AuNPs showed multiple adsorption constants of (3 ± 0.7) x 10-2 and (9.7 ± 2.2) x 10-4 respectively. The eReuss software proved to be a powerful tool to analyze image results from electrophoretic runs, and the video analysis feature gives way to an innovative way of analyzing these experiments and extract further information on the Protein Corona stability. Fergusson Plot analysis and Light scattering techniques (DLS, NTA and ELS) were performed to determine hydrodynamic sizes and Zeta-Potential of bionanoconjugated samples. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 2018-11-01T00:00:00Z 2021-11-12T13:55:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/127585 |
url |
http://hdl.handle.net/10362/127585 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596716561989632 |