Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7)
| Main Author: | |
|---|---|
| Publication Date: | 2018 |
| Other Authors: | |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10773/22991 |
Summary: | The Golomb-Welch conjecture states that there is no perfect r-error correcting Lee code of word length n over ℤ for n ≥ 3 and r ≥ 2. This problem has received great attention due to its importance in applications in several areas beyond mathematics and computer sciences. Many results on this subject have been achieved, however the conjecture is only solved for some particular values of n and r, namely: 3 ≤ n ≤ 5 and r ≥ 2; n = 6 and r = 2. Here we give an important contribution for the case n = 7 and r = 2, establishing cardinality restrictions on codeword sets. |
| id |
RCAP_7d25384b10dccf3deb2dd84346c3da3d |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/22991 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7)Perfect Lee codesGolomb-Welch conjectureSpace tilingsThe Golomb-Welch conjecture states that there is no perfect r-error correcting Lee code of word length n over ℤ for n ≥ 3 and r ≥ 2. This problem has received great attention due to its importance in applications in several areas beyond mathematics and computer sciences. Many results on this subject have been achieved, however the conjecture is only solved for some particular values of n and r, namely: 3 ≤ n ≤ 5 and r ≥ 2; n = 6 and r = 2. Here we give an important contribution for the case n = 7 and r = 2, establishing cardinality restrictions on codeword sets.De Gruyter2018-04-27T14:58:34Z2018-04-02T00:00:00Z2018-04-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/22991eng2391-545510.1515/math-2018-0027Cruz, Catarina N.Breda, Anainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:14:12Zoai:ria.ua.pt:10773/22991Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:01:38.290519Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7) |
| title |
Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7) |
| spellingShingle |
Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7) Cruz, Catarina N. Perfect Lee codes Golomb-Welch conjecture Space tilings |
| title_short |
Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7) |
| title_full |
Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7) |
| title_fullStr |
Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7) |
| title_full_unstemmed |
Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7) |
| title_sort |
Restriction conditions on PL(7, 2) codes (3 ≤ |_i| ≤ 7) |
| author |
Cruz, Catarina N. |
| author_facet |
Cruz, Catarina N. Breda, Ana |
| author_role |
author |
| author2 |
Breda, Ana |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Cruz, Catarina N. Breda, Ana |
| dc.subject.por.fl_str_mv |
Perfect Lee codes Golomb-Welch conjecture Space tilings |
| topic |
Perfect Lee codes Golomb-Welch conjecture Space tilings |
| description |
The Golomb-Welch conjecture states that there is no perfect r-error correcting Lee code of word length n over ℤ for n ≥ 3 and r ≥ 2. This problem has received great attention due to its importance in applications in several areas beyond mathematics and computer sciences. Many results on this subject have been achieved, however the conjecture is only solved for some particular values of n and r, namely: 3 ≤ n ≤ 5 and r ≥ 2; n = 6 and r = 2. Here we give an important contribution for the case n = 7 and r = 2, establishing cardinality restrictions on codeword sets. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-04-27T14:58:34Z 2018-04-02T00:00:00Z 2018-04-02 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/22991 |
| url |
http://hdl.handle.net/10773/22991 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
2391-5455 10.1515/math-2018-0027 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
De Gruyter |
| publisher.none.fl_str_mv |
De Gruyter |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594232369053696 |