Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficients
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2010 |
| Outros Autores: | , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://hdl.handle.net/1822/17770 |
Resumo: | This paper is concerned with the classification of tumoral tissue in the small bowel by using capsule endoscopic images. The followed approach is based on texture classification. Texture descriptors are derived from selected scales of the Discrete Curvelet Transform (DCT). The goal is to take advantage of the high directional sensitivity of the DCT (16 directions) when compared with the Discrete Wavelet Transform (DWT) (3 directions). Second order statistics are then computed in the HSV color space and named Color Curvelet Covariance (3C) coefficients. Finally, these coefficients are modeled by a Gaussian Mixture Model (GMM). Sensitivity of 99% and specificity of 95.19% are obtained in the testing set. |
| id |
RCAP_7cc3bdbe62fbb0211e8bb8aacaa1d2fa |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/17770 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficientsCapsule endoscopyDiscrete curvelet transformGaussian mixture modelSmall bowell tumorScience & TechnologyThis paper is concerned with the classification of tumoral tissue in the small bowel by using capsule endoscopic images. The followed approach is based on texture classification. Texture descriptors are derived from selected scales of the Discrete Curvelet Transform (DCT). The goal is to take advantage of the high directional sensitivity of the DCT (16 directions) when compared with the Discrete Wavelet Transform (DWT) (3 directions). Second order statistics are then computed in the HSV color space and named Color Curvelet Covariance (3C) coefficients. Finally, these coefficients are modeled by a Gaussian Mixture Model (GMM). Sensitivity of 99% and specificity of 95.19% are obtained in the testing set.Centre AlgoritmiIEEEUniversidade do MinhoMartins, Maria M.Barbosa, DanielRamos, JaimeLima, C. S.20102010-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/17770engM. M. Martins, D. J. Barbosa, J. Ramos and C. S. Lima, "Small bowel tumors detection in capsule endoscopy by Gaussian modeling of Color Curvelet Covariance coefficients," 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 2010, pp. 5557-5560, doi: 10.1109/IEMBS.2010.5626780.978-1-4244-4123-51557-170X10.1109/IEMBS.2010.562678021096477https://ieeexplore.ieee.org/document/5626780info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-09-14T01:26:41Zoai:repositorium.sdum.uminho.pt:1822/17770Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:23:42.573840Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficients |
| title |
Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficients |
| spellingShingle |
Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficients Martins, Maria M. Capsule endoscopy Discrete curvelet transform Gaussian mixture model Small bowell tumor Science & Technology |
| title_short |
Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficients |
| title_full |
Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficients |
| title_fullStr |
Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficients |
| title_full_unstemmed |
Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficients |
| title_sort |
Small bowel tumors detection in capsule endoscopy by gaussian modeling of color curvelet covariance coefficients |
| author |
Martins, Maria M. |
| author_facet |
Martins, Maria M. Barbosa, Daniel Ramos, Jaime Lima, C. S. |
| author_role |
author |
| author2 |
Barbosa, Daniel Ramos, Jaime Lima, C. S. |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Martins, Maria M. Barbosa, Daniel Ramos, Jaime Lima, C. S. |
| dc.subject.por.fl_str_mv |
Capsule endoscopy Discrete curvelet transform Gaussian mixture model Small bowell tumor Science & Technology |
| topic |
Capsule endoscopy Discrete curvelet transform Gaussian mixture model Small bowell tumor Science & Technology |
| description |
This paper is concerned with the classification of tumoral tissue in the small bowel by using capsule endoscopic images. The followed approach is based on texture classification. Texture descriptors are derived from selected scales of the Discrete Curvelet Transform (DCT). The goal is to take advantage of the high directional sensitivity of the DCT (16 directions) when compared with the Discrete Wavelet Transform (DWT) (3 directions). Second order statistics are then computed in the HSV color space and named Color Curvelet Covariance (3C) coefficients. Finally, these coefficients are modeled by a Gaussian Mixture Model (GMM). Sensitivity of 99% and specificity of 95.19% are obtained in the testing set. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010 2010-01-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference paper |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/17770 |
| url |
https://hdl.handle.net/1822/17770 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
M. M. Martins, D. J. Barbosa, J. Ramos and C. S. Lima, "Small bowel tumors detection in capsule endoscopy by Gaussian modeling of Color Curvelet Covariance coefficients," 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 2010, pp. 5557-5560, doi: 10.1109/IEMBS.2010.5626780. 978-1-4244-4123-5 1557-170X 10.1109/IEMBS.2010.5626780 21096477 https://ieeexplore.ieee.org/document/5626780 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
IEEE |
| publisher.none.fl_str_mv |
IEEE |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595918749794304 |