Automated Road Damage Detection using UAV Images and Deep Learning Techniques

Bibliographic Details
Main Author: Luís Augusto Silva
Publication Date: 2023
Other Authors: Valderi Reis Quietinho Leithardt, Vivian F. López Batista, Gabriel Villarrubia González, Juan F. De Paz Santana
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.26/53814
Summary: This paper presents a novel automated road damage detection approach using Unmanned Aerial Vehicle (UAV) images and deep learning techniques. Maintaining road infrastructure is critical for ensuring a safe and sustainable transportation system. However, the manual collection of road damage data can be labor-intensive and unsafe for humans. Therefore, we propose using UAVs and Artificial Intelligence (AI) technologies to improve road damage detection’s efficiency and accuracy significantly. Our proposed approach utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object detection and localization in UAV images. We trained and tested these algorithms using a combination of the RDD2022 dataset from China and a Spanish road dataset. The experimental results demonstrate that our approach is efficient and achieves 59.9% mean average precision mAP@.5 for the YOLOv5 version, 73.20% mAP@.5 for the YOLOv7 version, and 65.70% mAP@.5 for a YOLOv5 model with a Transformer Prediction Head. These results demonstrate the potential of using UAVs and deep learning for automated road damage detection and pave the way for future research in this field.
id RCAP_7c7efa9021ec3fa35f95d49a3e5c12dc
oai_identifier_str oai:comum.rcaap.pt:10400.26/53814
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Automated Road Damage Detection using UAV Images and Deep Learning TechniquesUAVRoad Damage DetectionDeep LearningObject-detectionThis paper presents a novel automated road damage detection approach using Unmanned Aerial Vehicle (UAV) images and deep learning techniques. Maintaining road infrastructure is critical for ensuring a safe and sustainable transportation system. However, the manual collection of road damage data can be labor-intensive and unsafe for humans. Therefore, we propose using UAVs and Artificial Intelligence (AI) technologies to improve road damage detection’s efficiency and accuracy significantly. Our proposed approach utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object detection and localization in UAV images. We trained and tested these algorithms using a combination of the RDD2022 dataset from China and a Spanish road dataset. The experimental results demonstrate that our approach is efficient and achieves 59.9% mean average precision mAP@.5 for the YOLOv5 version, 73.20% mAP@.5 for the YOLOv7 version, and 65.70% mAP@.5 for a YOLOv5 model with a Transformer Prediction Head. These results demonstrate the potential of using UAVs and deep learning for automated road damage detection and pave the way for future research in this field.Repositório ComumLuís Augusto SilvaValderi Reis Quietinho LeithardtVivian F. López BatistaGabriel Villarrubia GonzálezJuan F. De Paz Santana2025-01-14T15:06:42Z20232023-06-26T11:01:45Z2023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/53814eng10.1109/ACCESS.2023.3287770info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T15:37:42Zoai:comum.rcaap.pt:10400.26/53814Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:53:01.089249Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Automated Road Damage Detection using UAV Images and Deep Learning Techniques
title Automated Road Damage Detection using UAV Images and Deep Learning Techniques
spellingShingle Automated Road Damage Detection using UAV Images and Deep Learning Techniques
Luís Augusto Silva
UAV
Road Damage Detection
Deep Learning
Object-detection
title_short Automated Road Damage Detection using UAV Images and Deep Learning Techniques
title_full Automated Road Damage Detection using UAV Images and Deep Learning Techniques
title_fullStr Automated Road Damage Detection using UAV Images and Deep Learning Techniques
title_full_unstemmed Automated Road Damage Detection using UAV Images and Deep Learning Techniques
title_sort Automated Road Damage Detection using UAV Images and Deep Learning Techniques
author Luís Augusto Silva
author_facet Luís Augusto Silva
Valderi Reis Quietinho Leithardt
Vivian F. López Batista
Gabriel Villarrubia González
Juan F. De Paz Santana
author_role author
author2 Valderi Reis Quietinho Leithardt
Vivian F. López Batista
Gabriel Villarrubia González
Juan F. De Paz Santana
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Luís Augusto Silva
Valderi Reis Quietinho Leithardt
Vivian F. López Batista
Gabriel Villarrubia González
Juan F. De Paz Santana
dc.subject.por.fl_str_mv UAV
Road Damage Detection
Deep Learning
Object-detection
topic UAV
Road Damage Detection
Deep Learning
Object-detection
description This paper presents a novel automated road damage detection approach using Unmanned Aerial Vehicle (UAV) images and deep learning techniques. Maintaining road infrastructure is critical for ensuring a safe and sustainable transportation system. However, the manual collection of road damage data can be labor-intensive and unsafe for humans. Therefore, we propose using UAVs and Artificial Intelligence (AI) technologies to improve road damage detection’s efficiency and accuracy significantly. Our proposed approach utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object detection and localization in UAV images. We trained and tested these algorithms using a combination of the RDD2022 dataset from China and a Spanish road dataset. The experimental results demonstrate that our approach is efficient and achieves 59.9% mean average precision mAP@.5 for the YOLOv5 version, 73.20% mAP@.5 for the YOLOv7 version, and 65.70% mAP@.5 for a YOLOv5 model with a Transformer Prediction Head. These results demonstrate the potential of using UAVs and deep learning for automated road damage detection and pave the way for future research in this field.
publishDate 2023
dc.date.none.fl_str_mv 2023
2023-06-26T11:01:45Z
2023-01-01T00:00:00Z
2025-01-14T15:06:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/53814
url http://hdl.handle.net/10400.26/53814
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1109/ACCESS.2023.3287770
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602816376045569