Automated Road Damage Detection using UAV Images and Deep Learning Techniques
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.26/53814 |
Summary: | This paper presents a novel automated road damage detection approach using Unmanned Aerial Vehicle (UAV) images and deep learning techniques. Maintaining road infrastructure is critical for ensuring a safe and sustainable transportation system. However, the manual collection of road damage data can be labor-intensive and unsafe for humans. Therefore, we propose using UAVs and Artificial Intelligence (AI) technologies to improve road damage detection’s efficiency and accuracy significantly. Our proposed approach utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object detection and localization in UAV images. We trained and tested these algorithms using a combination of the RDD2022 dataset from China and a Spanish road dataset. The experimental results demonstrate that our approach is efficient and achieves 59.9% mean average precision mAP@.5 for the YOLOv5 version, 73.20% mAP@.5 for the YOLOv7 version, and 65.70% mAP@.5 for a YOLOv5 model with a Transformer Prediction Head. These results demonstrate the potential of using UAVs and deep learning for automated road damage detection and pave the way for future research in this field. |
id |
RCAP_7c7efa9021ec3fa35f95d49a3e5c12dc |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/53814 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Automated Road Damage Detection using UAV Images and Deep Learning TechniquesUAVRoad Damage DetectionDeep LearningObject-detectionThis paper presents a novel automated road damage detection approach using Unmanned Aerial Vehicle (UAV) images and deep learning techniques. Maintaining road infrastructure is critical for ensuring a safe and sustainable transportation system. However, the manual collection of road damage data can be labor-intensive and unsafe for humans. Therefore, we propose using UAVs and Artificial Intelligence (AI) technologies to improve road damage detection’s efficiency and accuracy significantly. Our proposed approach utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object detection and localization in UAV images. We trained and tested these algorithms using a combination of the RDD2022 dataset from China and a Spanish road dataset. The experimental results demonstrate that our approach is efficient and achieves 59.9% mean average precision mAP@.5 for the YOLOv5 version, 73.20% mAP@.5 for the YOLOv7 version, and 65.70% mAP@.5 for a YOLOv5 model with a Transformer Prediction Head. These results demonstrate the potential of using UAVs and deep learning for automated road damage detection and pave the way for future research in this field.Repositório ComumLuís Augusto SilvaValderi Reis Quietinho LeithardtVivian F. López BatistaGabriel Villarrubia GonzálezJuan F. De Paz Santana2025-01-14T15:06:42Z20232023-06-26T11:01:45Z2023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/53814eng10.1109/ACCESS.2023.3287770info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T15:37:42Zoai:comum.rcaap.pt:10400.26/53814Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:53:01.089249Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Automated Road Damage Detection using UAV Images and Deep Learning Techniques |
title |
Automated Road Damage Detection using UAV Images and Deep Learning Techniques |
spellingShingle |
Automated Road Damage Detection using UAV Images and Deep Learning Techniques Luís Augusto Silva UAV Road Damage Detection Deep Learning Object-detection |
title_short |
Automated Road Damage Detection using UAV Images and Deep Learning Techniques |
title_full |
Automated Road Damage Detection using UAV Images and Deep Learning Techniques |
title_fullStr |
Automated Road Damage Detection using UAV Images and Deep Learning Techniques |
title_full_unstemmed |
Automated Road Damage Detection using UAV Images and Deep Learning Techniques |
title_sort |
Automated Road Damage Detection using UAV Images and Deep Learning Techniques |
author |
Luís Augusto Silva |
author_facet |
Luís Augusto Silva Valderi Reis Quietinho Leithardt Vivian F. López Batista Gabriel Villarrubia González Juan F. De Paz Santana |
author_role |
author |
author2 |
Valderi Reis Quietinho Leithardt Vivian F. López Batista Gabriel Villarrubia González Juan F. De Paz Santana |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Luís Augusto Silva Valderi Reis Quietinho Leithardt Vivian F. López Batista Gabriel Villarrubia González Juan F. De Paz Santana |
dc.subject.por.fl_str_mv |
UAV Road Damage Detection Deep Learning Object-detection |
topic |
UAV Road Damage Detection Deep Learning Object-detection |
description |
This paper presents a novel automated road damage detection approach using Unmanned Aerial Vehicle (UAV) images and deep learning techniques. Maintaining road infrastructure is critical for ensuring a safe and sustainable transportation system. However, the manual collection of road damage data can be labor-intensive and unsafe for humans. Therefore, we propose using UAVs and Artificial Intelligence (AI) technologies to improve road damage detection’s efficiency and accuracy significantly. Our proposed approach utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object detection and localization in UAV images. We trained and tested these algorithms using a combination of the RDD2022 dataset from China and a Spanish road dataset. The experimental results demonstrate that our approach is efficient and achieves 59.9% mean average precision mAP@.5 for the YOLOv5 version, 73.20% mAP@.5 for the YOLOv7 version, and 65.70% mAP@.5 for a YOLOv5 model with a Transformer Prediction Head. These results demonstrate the potential of using UAVs and deep learning for automated road damage detection and pave the way for future research in this field. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-06-26T11:01:45Z 2023-01-01T00:00:00Z 2025-01-14T15:06:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/53814 |
url |
http://hdl.handle.net/10400.26/53814 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/ACCESS.2023.3287770 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602816376045569 |