Self-adaptive combination of global tabu search and local search for nonlinear equations

Bibliographic Details
Main Author: Ramadas, Gisela C. V.
Publication Date: 2012
Other Authors: Fernandes, Edite M. G. P.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.22/4067
Summary: Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.
id RCAP_7c70c8ed0807e50e480a5d486ee620bc
oai_identifier_str oai:recipp.ipp.pt:10400.22/4067
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Self-adaptive combination of global tabu search and local search for nonlinear equationsNonlinear equationsMetaheuristicTabu searchHooke and Jeeves methodSolving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.Taylor & FrancisREPOSITÓRIO P.PORTORamadas, Gisela C. V.Fernandes, Edite M. G. P.2014-02-25T17:00:07Z20122012-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/4067eng0020-71601029-026510.1080/00207160.2012.687727info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:15:41Zoai:recipp.ipp.pt:10400.22/4067Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:45:12.843520Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Self-adaptive combination of global tabu search and local search for nonlinear equations
title Self-adaptive combination of global tabu search and local search for nonlinear equations
spellingShingle Self-adaptive combination of global tabu search and local search for nonlinear equations
Ramadas, Gisela C. V.
Nonlinear equations
Metaheuristic
Tabu search
Hooke and Jeeves method
title_short Self-adaptive combination of global tabu search and local search for nonlinear equations
title_full Self-adaptive combination of global tabu search and local search for nonlinear equations
title_fullStr Self-adaptive combination of global tabu search and local search for nonlinear equations
title_full_unstemmed Self-adaptive combination of global tabu search and local search for nonlinear equations
title_sort Self-adaptive combination of global tabu search and local search for nonlinear equations
author Ramadas, Gisela C. V.
author_facet Ramadas, Gisela C. V.
Fernandes, Edite M. G. P.
author_role author
author2 Fernandes, Edite M. G. P.
author2_role author
dc.contributor.none.fl_str_mv REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Ramadas, Gisela C. V.
Fernandes, Edite M. G. P.
dc.subject.por.fl_str_mv Nonlinear equations
Metaheuristic
Tabu search
Hooke and Jeeves method
topic Nonlinear equations
Metaheuristic
Tabu search
Hooke and Jeeves method
description Solving systems of nonlinear equations is a very important task since the problems emerge mostly through the mathematical modelling of real problems that arise naturally in many branches of engineering and in the physical sciences. The problem can be naturally reformulated as a global optimization problem. In this paper, we show that a self-adaptive combination of a metaheuristic with a classical local search method is able to converge to some difficult problems that are not solved by Newton-type methods.
publishDate 2012
dc.date.none.fl_str_mv 2012
2012-01-01T00:00:00Z
2014-02-25T17:00:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/4067
url http://hdl.handle.net/10400.22/4067
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0020-7160
1029-0265
10.1080/00207160.2012.687727
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600681539272704