Price forecasting of electricity markets in the presence of a high penetration of wind power generators

Bibliographic Details
Main Author: Talari,S
Publication Date: 2017
Other Authors: Osório,GJ, Shafie khah,M, Wang,F, Heidari,A, João Catalão
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://repositorio.inesctec.pt/handle/123456789/4842
http://dx.doi.org/10.3390/su9112065
Summary: Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind generators based on Wavelet transform, bivariate Auto-Regressive Integrated Moving Average (ARIMA) method and Radial Basis Function Neural Network (RBFN). To this end, a weighted time series for wind dominated power systems is calculated and added to a bivariate ARIMA model along with the price time series. Moreover, RBFN is applied as a tool to correct the estimation error, and particle swarm optimization (PSO) is used to optimize the structure and adapt the RBFN to the particular training set. This method is evaluated on the Spanish electricity market, which shows the efficiency of this approach. This method has less error compared with other methods especially when it considers the effects of large-scale wind generators. © 2017 by the authors.
id RCAP_7c3194a2774ec0e5f40cf3b3aa1c93b4
oai_identifier_str oai:repositorio.inesctec.pt:123456789/4842
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Price forecasting of electricity markets in the presence of a high penetration of wind power generatorsPrice forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind generators based on Wavelet transform, bivariate Auto-Regressive Integrated Moving Average (ARIMA) method and Radial Basis Function Neural Network (RBFN). To this end, a weighted time series for wind dominated power systems is calculated and added to a bivariate ARIMA model along with the price time series. Moreover, RBFN is applied as a tool to correct the estimation error, and particle swarm optimization (PSO) is used to optimize the structure and adapt the RBFN to the particular training set. This method is evaluated on the Spanish electricity market, which shows the efficiency of this approach. This method has less error compared with other methods especially when it considers the effects of large-scale wind generators. © 2017 by the authors.2017-12-22T18:16:52Z2017-01-01T00:00:00Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/4842http://dx.doi.org/10.3390/su9112065engTalari,SOsório,GJShafie khah,MWang,FHeidari,AJoão Catalãoinfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-12T02:21:57Zoai:repositorio.inesctec.pt:123456789/4842Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:57:59.666243Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Price forecasting of electricity markets in the presence of a high penetration of wind power generators
title Price forecasting of electricity markets in the presence of a high penetration of wind power generators
spellingShingle Price forecasting of electricity markets in the presence of a high penetration of wind power generators
Talari,S
title_short Price forecasting of electricity markets in the presence of a high penetration of wind power generators
title_full Price forecasting of electricity markets in the presence of a high penetration of wind power generators
title_fullStr Price forecasting of electricity markets in the presence of a high penetration of wind power generators
title_full_unstemmed Price forecasting of electricity markets in the presence of a high penetration of wind power generators
title_sort Price forecasting of electricity markets in the presence of a high penetration of wind power generators
author Talari,S
author_facet Talari,S
Osório,GJ
Shafie khah,M
Wang,F
Heidari,A
João Catalão
author_role author
author2 Osório,GJ
Shafie khah,M
Wang,F
Heidari,A
João Catalão
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Talari,S
Osório,GJ
Shafie khah,M
Wang,F
Heidari,A
João Catalão
description Price forecasting plays a vital role in the day-ahead markets. Once sellers and buyers access an accurate price forecasting, managing the economic risk can be conducted appropriately through offering or bidding suitable prices. In networks with high wind power penetration, the electricity price is influenced by wind energy; therefore, price forecasting can be more complicated. This paper proposes a novel hybrid approach for price forecasting of day-ahead markets, with high penetration of wind generators based on Wavelet transform, bivariate Auto-Regressive Integrated Moving Average (ARIMA) method and Radial Basis Function Neural Network (RBFN). To this end, a weighted time series for wind dominated power systems is calculated and added to a bivariate ARIMA model along with the price time series. Moreover, RBFN is applied as a tool to correct the estimation error, and particle swarm optimization (PSO) is used to optimize the structure and adapt the RBFN to the particular training set. This method is evaluated on the Spanish electricity market, which shows the efficiency of this approach. This method has less error compared with other methods especially when it considers the effects of large-scale wind generators. © 2017 by the authors.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-22T18:16:52Z
2017-01-01T00:00:00Z
2017
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.inesctec.pt/handle/123456789/4842
http://dx.doi.org/10.3390/su9112065
url http://repositorio.inesctec.pt/handle/123456789/4842
http://dx.doi.org/10.3390/su9112065
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597784514625536