Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals

Bibliographic Details
Main Author: Ribeiro, J. P.
Publication Date: 2022
Other Authors: Domingues, R. M. A., Babo, P. S., Nogueira, L., Reseland, J., Reis, R. L., Gomez-Florit, Manuel, Gomes, Manuela E.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/80341
Summary: Bone is a vascularized organic-inorganic composite tissue that shows a heavily-mineralized extracellular matrix (ECM) on the nanoscale. Herein, the nucleation of calcium phosphates during the biomineralization process was mimicked using negatively-charged cellulose nanocrystals (CNCs). These mineralized-CNCs were combined with platelet lysate to produce nanocomposite scaffolds through cryogelation to mimic bone ECM protein-mineral composite nature and take advantage of the bioactivity steaming from platelet-derived biomolecules. The nanocomposite scaffolds showed high microporosity (94â 95%), high elasticity (recover from 75% strain cycles), injectability, and modulated platelet-derived growth factors sequestration and release. Furthermore, they increased alkaline phosphatase activity (up to 10-fold) and up-regulated the expression of bone-related markers (up to 2-fold), without osteogenic supplementation, demonstrating their osteoinductive properties. Also, the scaffolds promoted the chemotaxis of endothelial cells and enhanced the expression of endothelial markers, showing proangiogenic potential. These results suggest that the mineralized nanocomposite scaffolds can enhance bone regeneration by simultaneously promoting osteogenesis and angiogenesis.
id RCAP_7bcfc131ed264916c86e9175a3dfd778
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/80341
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystalsCalcium PhosphateCellulose nanocrystalscryogelshydroxyapatiteNanoscale biomineralizationNon-collagenous proteinsPlatelet lysateScience & TechnologyBone is a vascularized organic-inorganic composite tissue that shows a heavily-mineralized extracellular matrix (ECM) on the nanoscale. Herein, the nucleation of calcium phosphates during the biomineralization process was mimicked using negatively-charged cellulose nanocrystals (CNCs). These mineralized-CNCs were combined with platelet lysate to produce nanocomposite scaffolds through cryogelation to mimic bone ECM protein-mineral composite nature and take advantage of the bioactivity steaming from platelet-derived biomolecules. The nanocomposite scaffolds showed high microporosity (94â 95%), high elasticity (recover from 75% strain cycles), injectability, and modulated platelet-derived growth factors sequestration and release. Furthermore, they increased alkaline phosphatase activity (up to 10-fold) and up-regulated the expression of bone-related markers (up to 2-fold), without osteogenic supplementation, demonstrating their osteoinductive properties. Also, the scaffolds promoted the chemotaxis of endothelial cells and enhanced the expression of endothelial markers, showing proangiogenic potential. These results suggest that the mineralized nanocomposite scaffolds can enhance bone regeneration by simultaneously promoting osteogenesis and angiogenesis.We acknowledge the financial support from Research Council of Norway for project no. 287953 and from Portuguese Foundation for Science and Technology (FCT) for CEECIND/01375/2017 to MGF and 2020.03410.CEECIND to RMAD. We also acknowledge Dr. Margarida Miranda (3B's Research Group, University of Minho) for the TGA analysis.ElsevierUniversidade do MinhoRibeiro, J. P.Domingues, R. M. A.Babo, P. S.Nogueira, L.Reseland, J.Reis, R. L.Gomez-Florit, ManuelGomes, Manuela E.2022-052022-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/80341engRibeiro, J. P., Domingues, R. M. A., Babo, P. S., Nogueira, L. P., Reseland, J. E., Reis, R. L., … Gomes, M. E. (2022, September). Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals. Carbohydrate Polymers. Elsevier BV. http://doi.org/10.1016/j.carbpol.2022.1196380144-86171879-134410.1016/j.carbpol.2022.11963835725198https://www.sciencedirect.com/science/article/pii/S0144861722005434info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T03:53:20Zoai:repositorium.sdum.uminho.pt:1822/80341Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:43:50.593086Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals
title Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals
spellingShingle Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals
Ribeiro, J. P.
Calcium Phosphate
Cellulose nanocrystals
cryogels
hydroxyapatite
Nanoscale biomineralization
Non-collagenous proteins
Platelet lysate
Science & Technology
title_short Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals
title_full Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals
title_fullStr Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals
title_full_unstemmed Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals
title_sort Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals
author Ribeiro, J. P.
author_facet Ribeiro, J. P.
Domingues, R. M. A.
Babo, P. S.
Nogueira, L.
Reseland, J.
Reis, R. L.
Gomez-Florit, Manuel
Gomes, Manuela E.
author_role author
author2 Domingues, R. M. A.
Babo, P. S.
Nogueira, L.
Reseland, J.
Reis, R. L.
Gomez-Florit, Manuel
Gomes, Manuela E.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ribeiro, J. P.
Domingues, R. M. A.
Babo, P. S.
Nogueira, L.
Reseland, J.
Reis, R. L.
Gomez-Florit, Manuel
Gomes, Manuela E.
dc.subject.por.fl_str_mv Calcium Phosphate
Cellulose nanocrystals
cryogels
hydroxyapatite
Nanoscale biomineralization
Non-collagenous proteins
Platelet lysate
Science & Technology
topic Calcium Phosphate
Cellulose nanocrystals
cryogels
hydroxyapatite
Nanoscale biomineralization
Non-collagenous proteins
Platelet lysate
Science & Technology
description Bone is a vascularized organic-inorganic composite tissue that shows a heavily-mineralized extracellular matrix (ECM) on the nanoscale. Herein, the nucleation of calcium phosphates during the biomineralization process was mimicked using negatively-charged cellulose nanocrystals (CNCs). These mineralized-CNCs were combined with platelet lysate to produce nanocomposite scaffolds through cryogelation to mimic bone ECM protein-mineral composite nature and take advantage of the bioactivity steaming from platelet-derived biomolecules. The nanocomposite scaffolds showed high microporosity (94â 95%), high elasticity (recover from 75% strain cycles), injectability, and modulated platelet-derived growth factors sequestration and release. Furthermore, they increased alkaline phosphatase activity (up to 10-fold) and up-regulated the expression of bone-related markers (up to 2-fold), without osteogenic supplementation, demonstrating their osteoinductive properties. Also, the scaffolds promoted the chemotaxis of endothelial cells and enhanced the expression of endothelial markers, showing proangiogenic potential. These results suggest that the mineralized nanocomposite scaffolds can enhance bone regeneration by simultaneously promoting osteogenesis and angiogenesis.
publishDate 2022
dc.date.none.fl_str_mv 2022-05
2022-05-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/80341
url https://hdl.handle.net/1822/80341
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ribeiro, J. P., Domingues, R. M. A., Babo, P. S., Nogueira, L. P., Reseland, J. E., Reis, R. L., … Gomes, M. E. (2022, September). Highly elastic and bioactive bone biomimetic scaffolds based on platelet lysate and biomineralized cellulose nanocrystals. Carbohydrate Polymers. Elsevier BV. http://doi.org/10.1016/j.carbpol.2022.119638
0144-8617
1879-1344
10.1016/j.carbpol.2022.119638
35725198
https://www.sciencedirect.com/science/article/pii/S0144861722005434
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594850095661056