Physical layer anomaly detection mechanisms in IoT networks

Bibliographic Details
Main Author: Martins, Pedro de Bastos
Publication Date: 2019
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/28616
Summary: With the advent of wireless mesh networks and the Internet of Things (IoT), security risks inherent to these types of networks, either non-authorized use of the network or data exfiltration, have grown in number. Most of the approaches currently available for anomaly detection in IoT networks perform frame and packet inspection, which may inadvertently reveal the private behavioral patterns of its users. Additionally, those whose focus falls on the physical layer data often use Received Signal Strength Indicator (RSSI) as a distance metric and perform anomaly detection according to the nodes’ relative distance, or use spectrum values directly as inputs of classification models without any data exploration. This Dissertation proposes privacy-focused mechanisms for anomaly detection, which analyses radio activity at the physical layer, measuring silence and activity periods. We then extract features from the duration of these periods, perform data exploration and feature engineering, and use them for training both classical and neural network approaches of One-Class Classification (OCC) models. We train our models with data captured from interactions with an Amazon Echo, first on a noise-free environment, simulating a home-automation scenario, and second with multiple devices generating background data exchanges on a lab full of devices and interference. We then test them against similar scenarios with a tampered network node, periodically uploading data to a local machine. Our data show that, in both situations, the best performing model is able to detect anomalies with a 99% precision rate. This work also proposes a framework for deploying the validated models into a production environment. This proposal defines the entire data pipeline, which is recorded and processed at the sniffers, sent to a message broker, and consumed by the corresponding probe’s classifier instance at a central server. This “server” is responsible for managing the consumer/classifier instances, storing the windows of features and respective labels, and periodically re-train the models so that they can adapt to the behavioral changes on the network. We performed series of tests to assert if this architecture is able to scale with a higher number of probes; these tests showed that, due to memory constraints, it is advisable to split the data consumers and classifiers across different physical hosts.
id RCAP_7b22c0f988bd9be01f0af03c8ff78c37
oai_identifier_str oai:ria.ua.pt:10773/28616
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Physical layer anomaly detection mechanisms in IoT networksIoT networksNetwork monitoringRadio signal monitoringAnomaly detectionOne-class classificationMachine learningWith the advent of wireless mesh networks and the Internet of Things (IoT), security risks inherent to these types of networks, either non-authorized use of the network or data exfiltration, have grown in number. Most of the approaches currently available for anomaly detection in IoT networks perform frame and packet inspection, which may inadvertently reveal the private behavioral patterns of its users. Additionally, those whose focus falls on the physical layer data often use Received Signal Strength Indicator (RSSI) as a distance metric and perform anomaly detection according to the nodes’ relative distance, or use spectrum values directly as inputs of classification models without any data exploration. This Dissertation proposes privacy-focused mechanisms for anomaly detection, which analyses radio activity at the physical layer, measuring silence and activity periods. We then extract features from the duration of these periods, perform data exploration and feature engineering, and use them for training both classical and neural network approaches of One-Class Classification (OCC) models. We train our models with data captured from interactions with an Amazon Echo, first on a noise-free environment, simulating a home-automation scenario, and second with multiple devices generating background data exchanges on a lab full of devices and interference. We then test them against similar scenarios with a tampered network node, periodically uploading data to a local machine. Our data show that, in both situations, the best performing model is able to detect anomalies with a 99% precision rate. This work also proposes a framework for deploying the validated models into a production environment. This proposal defines the entire data pipeline, which is recorded and processed at the sniffers, sent to a message broker, and consumed by the corresponding probe’s classifier instance at a central server. This “server” is responsible for managing the consumer/classifier instances, storing the windows of features and respective labels, and periodically re-train the models so that they can adapt to the behavioral changes on the network. We performed series of tests to assert if this architecture is able to scale with a higher number of probes; these tests showed that, due to memory constraints, it is advisable to split the data consumers and classifiers across different physical hosts.Com o aparecimento das redes em malha sem-fios e da Internet of Things (IoT) aumentam também os riscos associados à segurança das mesmas, seja pelo uso indevido da rede ou exfiltração de informação. A maioria das soluções atuais para deteção de anomalias em redes IoT baseiam-se em analisar tramas ou pacotes, o que, inadvertidamente, pode revelar padrões de comportamento dos utilizadores, que estes considerem privados. Além disso, as soluções que se focam em inspecionar dados da camada física normalmente usam a potência de sinal recebido (RSSI) como uma métrica de distância e detetam anomalias baseadas na posição relativa dos nós da rede, ou usam os valores do espetro diretamente em modelos de classificação sem prévio tratamento de dados. Esta Dissertação propõe mecanismos para deteção de anomalias, assegurando simultaneamente a privacidade dos seus nós, que se baseiam na análise de atividade rádio na camada física, medindo a duração de períodos de silêncio e atividade. Depois da extração de propriedades que caracterizam estes períodos, é realizada uma exploração dos dados e um estudo das mesmas, sendo depois usadas para treinar modelos de classificação mono-classe, tanto usando algoritmos clássicos como redes neurais. Os modelos são treinados com dados retirados de uma série de interações com um Amazon Echo, primeiramente num ambiente sem ruído, numa tentativa de simular um cenário de automação doméstica simplificado, e seguidamente, num laboratório onde existia bastante atividade gerada por uma série de dispositivos, assim como interferências. De seguida, os modelos foram testados com dados semelhantes mas contendo um nó comprometido, que periodicamente enviava um ficheiro para uma máquina local. Os dados mostram que, em ambas as situações, foi possível atingir taxas de precisão de deteção na ordem dos 99%. Este trabalho também propõe uma arquitetura para integrar os modelos previamente validados em ambientes de produção. Nesta arquitetura é definido todo o percurso dos dados, que são capturados e processados pelos sniffers, enviados para um broker, e lidos pela instância de classificação correspondente no servidor central. Este “servidor” é responsável por gerir as instâncias de consumo de dados/ classificação, armazenar as janelas de features e a respetiva etiqueta, e por retreinar os modelos periodicamente para que estes acompanhem as alterações dos padrões da rede. Foi realizada uma série de testes para verificar se a plataforma é capaz de escalar com um aumento do número de probes, mostrando que, devido a limitações de memória, é recomendável dividir os classificadores por diversas máquinas.2019-122019-12-01T00:00:00Z2020-12-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/28616engMartins, Pedro de Bastosinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:26:00Zoai:ria.ua.pt:10773/28616Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:08:09.840779Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Physical layer anomaly detection mechanisms in IoT networks
title Physical layer anomaly detection mechanisms in IoT networks
spellingShingle Physical layer anomaly detection mechanisms in IoT networks
Martins, Pedro de Bastos
IoT networks
Network monitoring
Radio signal monitoring
Anomaly detection
One-class classification
Machine learning
title_short Physical layer anomaly detection mechanisms in IoT networks
title_full Physical layer anomaly detection mechanisms in IoT networks
title_fullStr Physical layer anomaly detection mechanisms in IoT networks
title_full_unstemmed Physical layer anomaly detection mechanisms in IoT networks
title_sort Physical layer anomaly detection mechanisms in IoT networks
author Martins, Pedro de Bastos
author_facet Martins, Pedro de Bastos
author_role author
dc.contributor.author.fl_str_mv Martins, Pedro de Bastos
dc.subject.por.fl_str_mv IoT networks
Network monitoring
Radio signal monitoring
Anomaly detection
One-class classification
Machine learning
topic IoT networks
Network monitoring
Radio signal monitoring
Anomaly detection
One-class classification
Machine learning
description With the advent of wireless mesh networks and the Internet of Things (IoT), security risks inherent to these types of networks, either non-authorized use of the network or data exfiltration, have grown in number. Most of the approaches currently available for anomaly detection in IoT networks perform frame and packet inspection, which may inadvertently reveal the private behavioral patterns of its users. Additionally, those whose focus falls on the physical layer data often use Received Signal Strength Indicator (RSSI) as a distance metric and perform anomaly detection according to the nodes’ relative distance, or use spectrum values directly as inputs of classification models without any data exploration. This Dissertation proposes privacy-focused mechanisms for anomaly detection, which analyses radio activity at the physical layer, measuring silence and activity periods. We then extract features from the duration of these periods, perform data exploration and feature engineering, and use them for training both classical and neural network approaches of One-Class Classification (OCC) models. We train our models with data captured from interactions with an Amazon Echo, first on a noise-free environment, simulating a home-automation scenario, and second with multiple devices generating background data exchanges on a lab full of devices and interference. We then test them against similar scenarios with a tampered network node, periodically uploading data to a local machine. Our data show that, in both situations, the best performing model is able to detect anomalies with a 99% precision rate. This work also proposes a framework for deploying the validated models into a production environment. This proposal defines the entire data pipeline, which is recorded and processed at the sniffers, sent to a message broker, and consumed by the corresponding probe’s classifier instance at a central server. This “server” is responsible for managing the consumer/classifier instances, storing the windows of features and respective labels, and periodically re-train the models so that they can adapt to the behavioral changes on the network. We performed series of tests to assert if this architecture is able to scale with a higher number of probes; these tests showed that, due to memory constraints, it is advisable to split the data consumers and classifiers across different physical hosts.
publishDate 2019
dc.date.none.fl_str_mv 2019-12
2019-12-01T00:00:00Z
2020-12-06T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/28616
url http://hdl.handle.net/10773/28616
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594323601457152