Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andrei

Bibliographic Details
Main Author: Correia, Bruno Ricardo da Silva
Publication Date: 2014
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/14039
Summary: In the last few years there has been a growth in the nanotechnology industry. The increase in the discovery and production of new nanomaterials, were the nanoparticles are included, makes their release in the environment more likely. Although in the recent years there has been an increase of published studies related to the toxic effects of these materials, the information available is not enough since a large number of nanomaterials exist. Even though the soils are extremely important for life, there is a lack of toxicity studies available. Taking this in consideration, more studies using the terrestrial compartment are needed. For these studies, earthworms are a recommend species since standard guidelines for toxicity tests in soil using earthworms have been used with success for more than 30 years and this species is essential for the maintenance of properties of this compartment. The aim of our work was to determine if different concentrations of two distinct types of nanoparticles, one inorganic (titanium silicon oxide- TiSiO4) and other organic (sodium dodecyl sulphate/didodecyldimethylammonium bromide- SDS/DDAB), are genotoxic and also if there is an antioxidant response in terrestrial organisms. For this, earthworms from the species Eisenia andrei (weight: from 300 to 600mg) were exposed for 30 days to the“Organisation for Economic Co-operation and Development”(OECD) artificial soil contaminated with different concentrations of the tested nanoparticles. After the exposure, coelomocytes were extracted from earthworms and DNA damage was assessed by comet assay. In addition the activity of antioxidant enzymes (e.g. glutathione peroxidase, glutathione reductase and glutathione-S-Transferase) was assessed, as well as lipid peroxidation. The results have shown that both particles were genotoxic, specially the TiSiO4-NPs. Taking in consideration available information about the mechanism by which the nanoparticles can exert their toxicity, it was expected that the genotoxicity would be related with an increase with the production of reactive oxygen species,leading to alterations in the activity of the antioxidant enzymes and the products of lipid peroxidation. Although some alterations could be found in the activity of antioxidant enzymes and in lipid peroxidation, these results are not statistically significant, suggesting that both nanoparticles are capable of causing damage to the DNA, but the mechanism used by these particles might not related with oxidative stress.
id RCAP_7ad0fd5dc039edbe12d33e3270efe835
oai_identifier_str oai:ria.ua.pt:10773/14039
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andreiBiologia molecularNanomateriais - ToxicidadePoluição dos solosMinhocas - Efeitos da poluiçãoToxicologia genéticaStresse oxidativoAntioxidantesIn the last few years there has been a growth in the nanotechnology industry. The increase in the discovery and production of new nanomaterials, were the nanoparticles are included, makes their release in the environment more likely. Although in the recent years there has been an increase of published studies related to the toxic effects of these materials, the information available is not enough since a large number of nanomaterials exist. Even though the soils are extremely important for life, there is a lack of toxicity studies available. Taking this in consideration, more studies using the terrestrial compartment are needed. For these studies, earthworms are a recommend species since standard guidelines for toxicity tests in soil using earthworms have been used with success for more than 30 years and this species is essential for the maintenance of properties of this compartment. The aim of our work was to determine if different concentrations of two distinct types of nanoparticles, one inorganic (titanium silicon oxide- TiSiO4) and other organic (sodium dodecyl sulphate/didodecyldimethylammonium bromide- SDS/DDAB), are genotoxic and also if there is an antioxidant response in terrestrial organisms. For this, earthworms from the species Eisenia andrei (weight: from 300 to 600mg) were exposed for 30 days to the“Organisation for Economic Co-operation and Development”(OECD) artificial soil contaminated with different concentrations of the tested nanoparticles. After the exposure, coelomocytes were extracted from earthworms and DNA damage was assessed by comet assay. In addition the activity of antioxidant enzymes (e.g. glutathione peroxidase, glutathione reductase and glutathione-S-Transferase) was assessed, as well as lipid peroxidation. The results have shown that both particles were genotoxic, specially the TiSiO4-NPs. Taking in consideration available information about the mechanism by which the nanoparticles can exert their toxicity, it was expected that the genotoxicity would be related with an increase with the production of reactive oxygen species,leading to alterations in the activity of the antioxidant enzymes and the products of lipid peroxidation. Although some alterations could be found in the activity of antioxidant enzymes and in lipid peroxidation, these results are not statistically significant, suggesting that both nanoparticles are capable of causing damage to the DNA, but the mechanism used by these particles might not related with oxidative stress.Nos últimos anos tem-se verificado um enorme crescimento da indústria da nanotecnologia. O aumento da produção e descoberta de novos nanomateriais, onde as nanopartículas estão incluídas, leva a um acréscimo do risco da introdução destes no ambiente. Apesar de recentemente se ter verificado um aumento da publicação de estudos relativos aos potenciais efeitos tóxicos destes materiais, estes são manifestamente insuficientes devido à enorme diversidade de nanomateriais. Apesar da elevada importância dos solos, existe uma falta de estudos sobre este compartimento. Como tal, mais estudos sobre os potenciais efeitos nefastos dos nanomateriais no solo são necessários. Para estudos de toxicidade de partículas no solo, as minhocas são um organismo indicado. Estas têm sido usadas durante mais de 30 anos em exposições a contaminantes no solo e são consideradas um organismo essencial para a manutenção deste compartimento. O nosso trabalho teve como objetivo determinar se diferentes concentrações de dois tipos distintos de nanopartículas, uma inorgânica (titanium silicon oxide -TiSiO4) e outra orgânica (sodiumdodecylsulphate/didodecyldimethylammoniumbromide - SDS/DDAB), são genotóxicas e também se desencadeiam uma resposta antioxidante em organismos terrestres. Para tal, minhocas da espécie Eisenia andrei foram expostas durante 30 dias a solos artificiais “Organisation for Economic Co-operation and Development” (OECD) contaminados com diferentes concentrações das nanopartículas teste. Após a exposição, coelomócitos foram extraídos das minhocas e os danos no DNA foram quantificados usando o “comet assay”. A atividade das enzimas antioxidantes (glutationa S-Transferase, glutationa peroxidase e glutationareductase), bem como produtos da peroxidação lipídica, foram determinados. Os resultados mostraram que ambas as nanopartículas são genotóxicas, em especial o TiSiO4. Tendo em conta a literatura disponível seria esperado que esta genotoxicidade estivesse relacionada com um aumento na produção de espécies reativas de oxigénio, levando a alterações significativas na atividade de enzimas antioxidantes e na peroxidação lipídica, mas tal não se verificou. Foi possível verificar alterações na actividade de algumas enzimas e na peroxidação lipídica nos tratamentos com as NPs, mas estas alterações não foram estatisticamente significativas. Os nossos resultados sugerem que ambas as nanopartículas são capazes de levar a danos no DNA aparentemente não relacionado com o stress oxidativo.Universidade de Aveiro2015-05-11T16:00:53Z2014-01-01T00:00:00Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/14039TID:201568047engCorreia, Bruno Ricardo da Silvainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:53:49Zoai:ria.ua.pt:10773/14039Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:50:07.614524Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andrei
title Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andrei
spellingShingle Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andrei
Correia, Bruno Ricardo da Silva
Biologia molecular
Nanomateriais - Toxicidade
Poluição dos solos
Minhocas - Efeitos da poluição
Toxicologia genética
Stresse oxidativo
Antioxidantes
title_short Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andrei
title_full Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andrei
title_fullStr Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andrei
title_full_unstemmed Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andrei
title_sort Evaluation of the genotoxicity effect and antioxidant response of two nanoparticles in Eisenia andrei
author Correia, Bruno Ricardo da Silva
author_facet Correia, Bruno Ricardo da Silva
author_role author
dc.contributor.author.fl_str_mv Correia, Bruno Ricardo da Silva
dc.subject.por.fl_str_mv Biologia molecular
Nanomateriais - Toxicidade
Poluição dos solos
Minhocas - Efeitos da poluição
Toxicologia genética
Stresse oxidativo
Antioxidantes
topic Biologia molecular
Nanomateriais - Toxicidade
Poluição dos solos
Minhocas - Efeitos da poluição
Toxicologia genética
Stresse oxidativo
Antioxidantes
description In the last few years there has been a growth in the nanotechnology industry. The increase in the discovery and production of new nanomaterials, were the nanoparticles are included, makes their release in the environment more likely. Although in the recent years there has been an increase of published studies related to the toxic effects of these materials, the information available is not enough since a large number of nanomaterials exist. Even though the soils are extremely important for life, there is a lack of toxicity studies available. Taking this in consideration, more studies using the terrestrial compartment are needed. For these studies, earthworms are a recommend species since standard guidelines for toxicity tests in soil using earthworms have been used with success for more than 30 years and this species is essential for the maintenance of properties of this compartment. The aim of our work was to determine if different concentrations of two distinct types of nanoparticles, one inorganic (titanium silicon oxide- TiSiO4) and other organic (sodium dodecyl sulphate/didodecyldimethylammonium bromide- SDS/DDAB), are genotoxic and also if there is an antioxidant response in terrestrial organisms. For this, earthworms from the species Eisenia andrei (weight: from 300 to 600mg) were exposed for 30 days to the“Organisation for Economic Co-operation and Development”(OECD) artificial soil contaminated with different concentrations of the tested nanoparticles. After the exposure, coelomocytes were extracted from earthworms and DNA damage was assessed by comet assay. In addition the activity of antioxidant enzymes (e.g. glutathione peroxidase, glutathione reductase and glutathione-S-Transferase) was assessed, as well as lipid peroxidation. The results have shown that both particles were genotoxic, specially the TiSiO4-NPs. Taking in consideration available information about the mechanism by which the nanoparticles can exert their toxicity, it was expected that the genotoxicity would be related with an increase with the production of reactive oxygen species,leading to alterations in the activity of the antioxidant enzymes and the products of lipid peroxidation. Although some alterations could be found in the activity of antioxidant enzymes and in lipid peroxidation, these results are not statistically significant, suggesting that both nanoparticles are capable of causing damage to the DNA, but the mechanism used by these particles might not related with oxidative stress.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01T00:00:00Z
2014
2015-05-11T16:00:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/14039
TID:201568047
url http://hdl.handle.net/10773/14039
identifier_str_mv TID:201568047
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade de Aveiro
publisher.none.fl_str_mv Universidade de Aveiro
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594112855506944