On paravector valued homogeneous monogenic polynomials with binomial expansion

Bibliographic Details
Main Author: Malonek, Helmuth Robert
Publication Date: 2012
Other Authors: Falcão, Maria Irene
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/15317
Summary: The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables.
id RCAP_7a704d475fecbfcaae6b8dfdf8c8ca0e
oai_identifier_str oai:ria.ua.pt:10773/15317
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling On paravector valued homogeneous monogenic polynomials with binomial expansionClifford analysisGeneralized Appell polynomialThe aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables.SP Birkhäuser Verlag Basel2016-03-16T16:39:19Z2012-09-01T00:00:00Z2012-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15317eng0188-700910.1007/s00006-012-0361-5Malonek, Helmuth RobertFalcão, Maria Ireneinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:56:16Zoai:ria.ua.pt:10773/15317Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:51:33.679062Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv On paravector valued homogeneous monogenic polynomials with binomial expansion
title On paravector valued homogeneous monogenic polynomials with binomial expansion
spellingShingle On paravector valued homogeneous monogenic polynomials with binomial expansion
Malonek, Helmuth Robert
Clifford analysis
Generalized Appell polynomial
title_short On paravector valued homogeneous monogenic polynomials with binomial expansion
title_full On paravector valued homogeneous monogenic polynomials with binomial expansion
title_fullStr On paravector valued homogeneous monogenic polynomials with binomial expansion
title_full_unstemmed On paravector valued homogeneous monogenic polynomials with binomial expansion
title_sort On paravector valued homogeneous monogenic polynomials with binomial expansion
author Malonek, Helmuth Robert
author_facet Malonek, Helmuth Robert
Falcão, Maria Irene
author_role author
author2 Falcão, Maria Irene
author2_role author
dc.contributor.author.fl_str_mv Malonek, Helmuth Robert
Falcão, Maria Irene
dc.subject.por.fl_str_mv Clifford analysis
Generalized Appell polynomial
topic Clifford analysis
Generalized Appell polynomial
description The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables.
publishDate 2012
dc.date.none.fl_str_mv 2012-09-01T00:00:00Z
2012-09
2016-03-16T16:39:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15317
url http://hdl.handle.net/10773/15317
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0188-7009
10.1007/s00006-012-0361-5
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SP Birkhäuser Verlag Basel
publisher.none.fl_str_mv SP Birkhäuser Verlag Basel
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594137132138496