On paravector valued homogeneous monogenic polynomials with binomial expansion
Main Author: | |
---|---|
Publication Date: | 2012 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/15317 |
Summary: | The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables. |
id |
RCAP_7a704d475fecbfcaae6b8dfdf8c8ca0e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15317 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
On paravector valued homogeneous monogenic polynomials with binomial expansionClifford analysisGeneralized Appell polynomialThe aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables.SP Birkhäuser Verlag Basel2016-03-16T16:39:19Z2012-09-01T00:00:00Z2012-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15317eng0188-700910.1007/s00006-012-0361-5Malonek, Helmuth RobertFalcão, Maria Ireneinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:56:16Zoai:ria.ua.pt:10773/15317Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:51:33.679062Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
spellingShingle |
On paravector valued homogeneous monogenic polynomials with binomial expansion Malonek, Helmuth Robert Clifford analysis Generalized Appell polynomial |
title_short |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_full |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_fullStr |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_full_unstemmed |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
title_sort |
On paravector valued homogeneous monogenic polynomials with binomial expansion |
author |
Malonek, Helmuth Robert |
author_facet |
Malonek, Helmuth Robert Falcão, Maria Irene |
author_role |
author |
author2 |
Falcão, Maria Irene |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Malonek, Helmuth Robert Falcão, Maria Irene |
dc.subject.por.fl_str_mv |
Clifford analysis Generalized Appell polynomial |
topic |
Clifford analysis Generalized Appell polynomial |
description |
The aim of this note is to study a set of paravector valued homogeneous monogenic polynomials that can be used for a construction of sequences of generalized Appell polynomials in the context of Clifford analysis. Therefore, we admit a general form of the vector part of the first degree polynomial in the Appell sequence. This approach is different from the one presented in recent papers on this subject. We show that in the case of paravector valued polynomials of three real variables, there exist essentially two different types of such polynomials together with two other trivial types of polynomials. The proof indicates a way of obtaining analogous results in the case of polynomials of more than three variables. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09-01T00:00:00Z 2012-09 2016-03-16T16:39:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15317 |
url |
http://hdl.handle.net/10773/15317 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0188-7009 10.1007/s00006-012-0361-5 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SP Birkhäuser Verlag Basel |
publisher.none.fl_str_mv |
SP Birkhäuser Verlag Basel |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594137132138496 |