Neural Networks for Condition Monitoring of Wind Turbines Gearbox
| Main Author: | |
|---|---|
| Publication Date: | 2012 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://repositorio.inesctec.pt/handle/123456789/2654 |
Summary: | Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine. |
| id |
RCAP_7a2adffa730bd55a0768954470c224bc |
|---|---|
| oai_identifier_str |
oai:repositorio.inesctec.pt:123456789/2654 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Neural Networks for Condition Monitoring of Wind Turbines GearboxWind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine.2017-11-16T13:57:10Z2012-01-01T00:00:00Z2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://repositorio.inesctec.pt/handle/123456789/2654engFernando Maciel BarbosaR. F. Mesquita BrandãoJ. Beleza Carvalhoinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-10-12T02:21:04Zoai:repositorio.inesctec.pt:123456789/2654Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:57:04.890170Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Neural Networks for Condition Monitoring of Wind Turbines Gearbox |
| title |
Neural Networks for Condition Monitoring of Wind Turbines Gearbox |
| spellingShingle |
Neural Networks for Condition Monitoring of Wind Turbines Gearbox Fernando Maciel Barbosa |
| title_short |
Neural Networks for Condition Monitoring of Wind Turbines Gearbox |
| title_full |
Neural Networks for Condition Monitoring of Wind Turbines Gearbox |
| title_fullStr |
Neural Networks for Condition Monitoring of Wind Turbines Gearbox |
| title_full_unstemmed |
Neural Networks for Condition Monitoring of Wind Turbines Gearbox |
| title_sort |
Neural Networks for Condition Monitoring of Wind Turbines Gearbox |
| author |
Fernando Maciel Barbosa |
| author_facet |
Fernando Maciel Barbosa R. F. Mesquita Brandão J. Beleza Carvalho |
| author_role |
author |
| author2 |
R. F. Mesquita Brandão J. Beleza Carvalho |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Fernando Maciel Barbosa R. F. Mesquita Brandão J. Beleza Carvalho |
| description |
Wind energy is considered a hope in future as a clean and sustainable energy, as can be seen by the growing number of wind farms installed all over the world. With the huge proliferation of wind farms, as an alternative to the traditional fossil power generation, the economic issues dictate the necessity of monitoring systems to optimize the availability and profits. The relatively high cost of operation and maintenance associated to wind power is a major issue. Wind turbines are most of the time located in remote areas or offshore and these factors increase the referred operation and maintenance costs. Good maintenance strategies are needed to increase the health management of wind turbines. The objective of this paper is to show the application of neural networks to analyze all the wind turbine information to identify possible future failures, based on previous information of the turbine. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-01-01T00:00:00Z 2012 2017-11-16T13:57:10Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.inesctec.pt/handle/123456789/2654 |
| url |
http://repositorio.inesctec.pt/handle/123456789/2654 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597776461561856 |