ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/87833 |
Summary: | The flavour-tagging algorithms developed by the ATLAS Collaboration and used to analyse its dataset of s=13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model tt¯ events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained. |
id |
RCAP_76dcbcaef43227685c0e77e1210da1f3 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/87833 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision datasetCiências Naturais::Ciências FísicasThe flavour-tagging algorithms developed by the ATLAS Collaboration and used to analyse its dataset of s=13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model tt¯ events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained.USDOE -U.S. Department of Energy(IN2P3-CNRS)info:eu-repo/semantics/publishedVersionUniversidade do MinhoCastro, Nuno FilipeOnofre, A.ATLAS Collaboration20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/87833engAad, G., Abbott, B., Abeling, K., Abicht, N. J., Abidi, S. H., Aboulhorma, A., . . . Collaboration, A. (2023). ATLAS flavour-tagging algorithms for the LHC Run 2 <i>pp</i> collision dataset. EUROPEAN PHYSICAL JOURNAL C, 83(7). doi: 10.1140/epjc/s10052-023-11699-11434-60441434-605210.1140/epjc/s10052-023-11699-1https://link.springer.com/article/10.1140/epjc/s10052-023-11699-1info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:07:26Zoai:repositorium.sdum.uminho.pt:1822/87833Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:41:50.880097Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset |
title |
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset |
spellingShingle |
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset Castro, Nuno Filipe Ciências Naturais::Ciências Físicas |
title_short |
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset |
title_full |
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset |
title_fullStr |
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset |
title_full_unstemmed |
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset |
title_sort |
ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset |
author |
Castro, Nuno Filipe |
author_facet |
Castro, Nuno Filipe Onofre, A. ATLAS Collaboration |
author_role |
author |
author2 |
Onofre, A. ATLAS Collaboration |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Castro, Nuno Filipe Onofre, A. ATLAS Collaboration |
dc.subject.por.fl_str_mv |
Ciências Naturais::Ciências Físicas |
topic |
Ciências Naturais::Ciências Físicas |
description |
The flavour-tagging algorithms developed by the ATLAS Collaboration and used to analyse its dataset of s=13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model tt¯ events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/87833 |
url |
https://hdl.handle.net/1822/87833 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Aad, G., Abbott, B., Abeling, K., Abicht, N. J., Abidi, S. H., Aboulhorma, A., . . . Collaboration, A. (2023). ATLAS flavour-tagging algorithms for the LHC Run 2 <i>pp</i> collision dataset. EUROPEAN PHYSICAL JOURNAL C, 83(7). doi: 10.1140/epjc/s10052-023-11699-1 1434-6044 1434-6052 10.1140/epjc/s10052-023-11699-1 https://link.springer.com/article/10.1140/epjc/s10052-023-11699-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595479794909184 |