Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/175555 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
| id |
RCAP_76cd1d492385cfbd5f38c4d8aa0ef0e3 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/175555 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loansAnalytical ModelsBankingMachine LearningCredit RiskCredit ScoringLoan DefaultsSDG 3 - Good health and well-beingSDG 8 - Decent work and economic growthDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and ManagementIn the contemporary financial landscape, influenced by various global events, banks have become increasingly cautious in extending credit, both for housing and for other consumer purposes. In an increasingly uncertain economic world, banks must develop ever more robust and effective models. This topic is of significant importance to explore and update, as banks directly impact a substantial portion of the global population through housing and consumer credit. This thesis aims to contribute to the development of models with current data, and consequently, assist the population. In this research, Python programming language will be employed to utilise a Machine Learning Approach for credit scoring analysis. Methods to be utilised include: Logistic Regression; Random Forest; Gradient Boosting; XGBoost. To determine the best model, the evaluation will be performed on four metrics: Accuracy; AUC Score; Type I Error; Type II Error. The XGBoost method was the best performer on all evaluated metrics. In the course of reviewing the selected literature, previous work were found that explored this subject solely with the objective of identifying the best Machine Learning method to create the optimal model for determining customer defaults. However, several questions emerged: ‘Will machine learning models be better than Logistic Regression?’ ‘Is the model that accepts more credit the safest for the bank, considering the Profit / Risk ratio?’ This thesis aims to answer these questions and determine not only the best model for the bank, but also its profits.Bravo, Jorge Miguel VenturaRUNSusana, David Manuel Pereira2024-11-20T15:08:57Z2024-10-302024-10-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/175555TID:203776143enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:43:45Zoai:run.unl.pt:10362/175555Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:15:54.918256Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans |
| title |
Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans |
| spellingShingle |
Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans Susana, David Manuel Pereira Analytical Models Banking Machine Learning Credit Risk Credit Scoring Loan Defaults SDG 3 - Good health and well-being SDG 8 - Decent work and economic growth Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
| title_short |
Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans |
| title_full |
Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans |
| title_fullStr |
Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans |
| title_full_unstemmed |
Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans |
| title_sort |
Optimizing Credit Scoring Models in Face of Global Economic Uncertainty: A Comprehensive Risk Analysis in Banking loans |
| author |
Susana, David Manuel Pereira |
| author_facet |
Susana, David Manuel Pereira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Bravo, Jorge Miguel Ventura RUN |
| dc.contributor.author.fl_str_mv |
Susana, David Manuel Pereira |
| dc.subject.por.fl_str_mv |
Analytical Models Banking Machine Learning Credit Risk Credit Scoring Loan Defaults SDG 3 - Good health and well-being SDG 8 - Decent work and economic growth Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
| topic |
Analytical Models Banking Machine Learning Credit Risk Credit Scoring Loan Defaults SDG 3 - Good health and well-being SDG 8 - Decent work and economic growth Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
| description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-11-20T15:08:57Z 2024-10-30 2024-10-30T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/175555 TID:203776143 |
| url |
http://hdl.handle.net/10362/175555 |
| identifier_str_mv |
TID:203776143 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833597981148839936 |