Spatial Coherence Mapping of Structured Astrophysical Sources
| Main Author: | |
|---|---|
| Publication Date: | 2019 |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10451/45596 |
Summary: | All optical fields that we encounter in nature or in the laboratory have random fluctuations. Although light emerging from lasers can be considered as “well-behaved” electromagnetic fields, that is certainly not the case of natural sources such as stars. Thus, they must be treated statistically using the theory of coherence, in particular, second-order statistics. The Mutual Coherence Function (MCF) and the Cross-Spectral Density Function (CSDF) are central quantities in the space-time and space-frequency domains, respectively, in the theory of coherence. Both quantities are connected through a Fourier transform. Moreover, all second order-optical quantities can be extracted from these central functions, for example, the intensity distribution and the spectral degree of coherence. Since, in general, the MCF and the CSDF change throughout propagation, all second-order optical quantities, such as the spectral density, also change throughout propagation. When the far-field normalized spectrum of light changes due to source correlations, we say that coherenceinduced spectral changes occurred. This is known as the Wolf effect and it is the driving force of this dissertation. In this thesis, we have investigated the use of heterogeneous computing for the propagation of partially coherent light, namely, the propagation of the CSDF. The main goal was to reduce the computation time. By defining the CSDF at the source plane, the software built is able to propagate the CSDF and retrieve second-order optical quantities such as the spectral density and the spectral degree of coherence. The implementation of this software was then used to perform numerical simulations of the propagation of the far-field normalized spectrum of planar sources. The main goal was to evaluate the presence of the Wolf effect in specific source models. The results obtained suggest that the far-field spectrum of source models, which do not have analytical solutions, can be computed using our implementation. We next designed to first-order a conceptual space-based instrument, named Solar Coherence Instrument (SCI), capable of performing spatial coherence measurements of individual solar granular cells (granules), present in the photosphere of the Sun. Two digital micromirror devices, which are reflective-type spatial light modulator, form the basis of our design. A signal-to-noise ratio estimation (> 102) was performed and the results point to the feasibility of such instrument. We then validated experimentally two crucial subsystems of SCI, namely, the subsystems responsible for selective imaging of a single solar granule and another responsible for spatial coherence measurements. In both cases, two experiments were designed and constructed, and the results obtained are presented and discussed. By comparing the spatial coherence measurement results with those expected from the van Cittert-Zernike theorem, we have obtained a good agreement, suggesting that such configuration is possible. |
| id |
RCAP_7674751cffa2e84af103df74c29f65af |
|---|---|
| oai_identifier_str |
oai:repositorio.ulisboa.pt:10451/45596 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Spatial Coherence Mapping of Structured Astrophysical SourcesCoherence and statistical opticscoherence optical effectsnumerical simulation and analysisheterogeneous computingoptical designastronomical instrumentationdigital micromirror devicesCoerência e óptica estatísticaefeitos ópticos da coerênciasimulação numérica e análisecomputação heterogéneadesenho ópticoinstrumentação astronómicadispositivo digital de microespelhosDomínio/Área Científica::Ciências Naturais::Ciências FísicasAll optical fields that we encounter in nature or in the laboratory have random fluctuations. Although light emerging from lasers can be considered as “well-behaved” electromagnetic fields, that is certainly not the case of natural sources such as stars. Thus, they must be treated statistically using the theory of coherence, in particular, second-order statistics. The Mutual Coherence Function (MCF) and the Cross-Spectral Density Function (CSDF) are central quantities in the space-time and space-frequency domains, respectively, in the theory of coherence. Both quantities are connected through a Fourier transform. Moreover, all second order-optical quantities can be extracted from these central functions, for example, the intensity distribution and the spectral degree of coherence. Since, in general, the MCF and the CSDF change throughout propagation, all second-order optical quantities, such as the spectral density, also change throughout propagation. When the far-field normalized spectrum of light changes due to source correlations, we say that coherenceinduced spectral changes occurred. This is known as the Wolf effect and it is the driving force of this dissertation. In this thesis, we have investigated the use of heterogeneous computing for the propagation of partially coherent light, namely, the propagation of the CSDF. The main goal was to reduce the computation time. By defining the CSDF at the source plane, the software built is able to propagate the CSDF and retrieve second-order optical quantities such as the spectral density and the spectral degree of coherence. The implementation of this software was then used to perform numerical simulations of the propagation of the far-field normalized spectrum of planar sources. The main goal was to evaluate the presence of the Wolf effect in specific source models. The results obtained suggest that the far-field spectrum of source models, which do not have analytical solutions, can be computed using our implementation. We next designed to first-order a conceptual space-based instrument, named Solar Coherence Instrument (SCI), capable of performing spatial coherence measurements of individual solar granular cells (granules), present in the photosphere of the Sun. Two digital micromirror devices, which are reflective-type spatial light modulator, form the basis of our design. A signal-to-noise ratio estimation (> 102) was performed and the results point to the feasibility of such instrument. We then validated experimentally two crucial subsystems of SCI, namely, the subsystems responsible for selective imaging of a single solar granule and another responsible for spatial coherence measurements. In both cases, two experiments were designed and constructed, and the results obtained are presented and discussed. By comparing the spatial coherence measurement results with those expected from the van Cittert-Zernike theorem, we have obtained a good agreement, suggesting that such configuration is possible.Todos os campos ópticos que encontramos na natureza ou no laboratório possuem flutuações aleatórias. Apesar de a luz proveniente dos lasers ser normalmente tratada como “bem-comportada”, do ponto de vista da coerência, esse não é o caso da luz gerada por fontes naturais como, por exemplo, as estrelas. Logo, o tratamento para estas flutuações tem de ser estatístico, utilizando a teoria de coerência, em particular, a estatística de segunda ordem. Nesta teoria, a Função de Coerência Mútua (FCM) e a Função Densidade Espectral Cruzada (FDEC) são quantidades centrais nos domínios espaço-tempo e espaçofrequência, respetivamente. Ambas estão ligadas por uma transformada de Fourier e todas as quantidades de segunda ordem, como a intensidade e a densidade espectral, podem ser extraídas destas duas quantidades centrais. No geral, a FCM e a FDEC variam ao longo da propagação da luz, logo, todas as quantidades de segunda-ordem também variam, como por exemplo, a densidade espectral. Quando o espectro normalizado da luz no campo longínquo varia devido a correlações na fonte de luz, dizemos que estamos perante uma variação espectral induzida por coerência, isto é, estamos perante aquilo a que se costuma chamar de efeito Wolf. Este efeito é o fio condutor desta tese. Nesta tese, investigamos o uso de computação heterogénea para a propagação de luz parcialmente coerente, isto é, através da propagação da FDEC. O objetivo principal passava por reduzir o tempo de computação. Ao definir uma FDEC para uma fonte luminosa planar, o programa computacional construído é capaz de propagar a FDEC e obter quantidades de segunda-ordem como a densidade espectral e o grau complexo de coerência. A implementação utilizada para este programa foi utilizada para efetuar simulações numéricas da propagação do espectro normalizado no campo longínquo de fontes luminosas parcialmente coerentes, em particular, para avaliar a presença do efeito Wolf. Os resultados sugerem que modelos de fontes cujos espectros no campo longínquo não possuem soluções analíticas, podem ser simulados através da nossa implementação. De seguida, desenhamos, em primeira ordem, um instrumento conceptual, baseado no espaço, chamado Solar Coherence Instrument (SCI), que é capaz de medir a coerência espacial de células convectivas solares (grânulos) que estão presentes na fotosfera do Sol. Dois moduladores espaciais de luz por reflexão, designados por Digital Micromirror Devices DMDs, formam a base do desenho deste instrumento. Foi realizada uma estimativa da razão sinal-ruído e o resultado aponta para a fiabilidade do instrumento. Após o desenho, procedemos à validação experimental de dois subsistemas fundamentais do SCI, nomeadamente, o subsistema responsável pela seletividade da luz proveniente de grânulos individuais e o subsistema responsável pela medição de coerência espacial. Em ambos os casos, duas experiências foram desenhadas e construídas e os resultados obtidos foram discutidos. Ao comparar os resultados obtidos das medidas de coerência espacial com aqueles que eram esperados pelo teorema de van Cittert-Zernike, obtivemos um bom ajuste, o que sugere que tal configuração é possível.Rebordão, José Manuel de Nunes VicenteRepositório da Universidade de LisboaMagalhães, Tiago Emanuel da Cunha2020-12-30T10:59:22Z2020-052019-122020-05-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10451/45596TID:101516703enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T14:26:16Zoai:repositorio.ulisboa.pt:10451/45596Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:11:48.198667Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Spatial Coherence Mapping of Structured Astrophysical Sources |
| title |
Spatial Coherence Mapping of Structured Astrophysical Sources |
| spellingShingle |
Spatial Coherence Mapping of Structured Astrophysical Sources Magalhães, Tiago Emanuel da Cunha Coherence and statistical optics coherence optical effects numerical simulation and analysis heterogeneous computing optical design astronomical instrumentation digital micromirror devices Coerência e óptica estatística efeitos ópticos da coerência simulação numérica e análise computação heterogénea desenho óptico instrumentação astronómica dispositivo digital de microespelhos Domínio/Área Científica::Ciências Naturais::Ciências Físicas |
| title_short |
Spatial Coherence Mapping of Structured Astrophysical Sources |
| title_full |
Spatial Coherence Mapping of Structured Astrophysical Sources |
| title_fullStr |
Spatial Coherence Mapping of Structured Astrophysical Sources |
| title_full_unstemmed |
Spatial Coherence Mapping of Structured Astrophysical Sources |
| title_sort |
Spatial Coherence Mapping of Structured Astrophysical Sources |
| author |
Magalhães, Tiago Emanuel da Cunha |
| author_facet |
Magalhães, Tiago Emanuel da Cunha |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Rebordão, José Manuel de Nunes Vicente Repositório da Universidade de Lisboa |
| dc.contributor.author.fl_str_mv |
Magalhães, Tiago Emanuel da Cunha |
| dc.subject.por.fl_str_mv |
Coherence and statistical optics coherence optical effects numerical simulation and analysis heterogeneous computing optical design astronomical instrumentation digital micromirror devices Coerência e óptica estatística efeitos ópticos da coerência simulação numérica e análise computação heterogénea desenho óptico instrumentação astronómica dispositivo digital de microespelhos Domínio/Área Científica::Ciências Naturais::Ciências Físicas |
| topic |
Coherence and statistical optics coherence optical effects numerical simulation and analysis heterogeneous computing optical design astronomical instrumentation digital micromirror devices Coerência e óptica estatística efeitos ópticos da coerência simulação numérica e análise computação heterogénea desenho óptico instrumentação astronómica dispositivo digital de microespelhos Domínio/Área Científica::Ciências Naturais::Ciências Físicas |
| description |
All optical fields that we encounter in nature or in the laboratory have random fluctuations. Although light emerging from lasers can be considered as “well-behaved” electromagnetic fields, that is certainly not the case of natural sources such as stars. Thus, they must be treated statistically using the theory of coherence, in particular, second-order statistics. The Mutual Coherence Function (MCF) and the Cross-Spectral Density Function (CSDF) are central quantities in the space-time and space-frequency domains, respectively, in the theory of coherence. Both quantities are connected through a Fourier transform. Moreover, all second order-optical quantities can be extracted from these central functions, for example, the intensity distribution and the spectral degree of coherence. Since, in general, the MCF and the CSDF change throughout propagation, all second-order optical quantities, such as the spectral density, also change throughout propagation. When the far-field normalized spectrum of light changes due to source correlations, we say that coherenceinduced spectral changes occurred. This is known as the Wolf effect and it is the driving force of this dissertation. In this thesis, we have investigated the use of heterogeneous computing for the propagation of partially coherent light, namely, the propagation of the CSDF. The main goal was to reduce the computation time. By defining the CSDF at the source plane, the software built is able to propagate the CSDF and retrieve second-order optical quantities such as the spectral density and the spectral degree of coherence. The implementation of this software was then used to perform numerical simulations of the propagation of the far-field normalized spectrum of planar sources. The main goal was to evaluate the presence of the Wolf effect in specific source models. The results obtained suggest that the far-field spectrum of source models, which do not have analytical solutions, can be computed using our implementation. We next designed to first-order a conceptual space-based instrument, named Solar Coherence Instrument (SCI), capable of performing spatial coherence measurements of individual solar granular cells (granules), present in the photosphere of the Sun. Two digital micromirror devices, which are reflective-type spatial light modulator, form the basis of our design. A signal-to-noise ratio estimation (> 102) was performed and the results point to the feasibility of such instrument. We then validated experimentally two crucial subsystems of SCI, namely, the subsystems responsible for selective imaging of a single solar granule and another responsible for spatial coherence measurements. In both cases, two experiments were designed and constructed, and the results obtained are presented and discussed. By comparing the spatial coherence measurement results with those expected from the van Cittert-Zernike theorem, we have obtained a good agreement, suggesting that such configuration is possible. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019-12 2020-12-30T10:59:22Z 2020-05 2020-05-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
doctoral thesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10451/45596 TID:101516703 |
| url |
http://hdl.handle.net/10451/45596 |
| identifier_str_mv |
TID:101516703 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833601625990627328 |