Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/40343 |
Summary: | We study the boundary regional controllability of a class of Riemann-Liouville fractional semilinear sub-diffusion systems with boundary Neumann conditions. The result is obtained by using semi-group theory, the fractional Hilbert uniqueness method, and Schauder's fixed point theorem. Conditions on the order of the derivative, internal region, and on the nonlinear part are obtained. Furthermore, we present appropriate sufficient conditions for the considered fractional system to be regionally controllable and, therefore, boundary regionally controllable. An example of a population density system with diffusion is given to illustrate the obtained theoretical results. Numerical simulations show that the proposed method provides satisfying results regarding two cases of the control operator. |
id |
RCAP_755ae3507d41cc58ef7f5e871b5ea7cf |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/40343 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Boundary Controllability of Riemann-Liouville Fractional Semilinear EquationsTime-fractional systemsSemilinear systemsBoundary regional controllabilityFractional diffusionLogistic growth law modelWe study the boundary regional controllability of a class of Riemann-Liouville fractional semilinear sub-diffusion systems with boundary Neumann conditions. The result is obtained by using semi-group theory, the fractional Hilbert uniqueness method, and Schauder's fixed point theorem. Conditions on the order of the derivative, internal region, and on the nonlinear part are obtained. Furthermore, we present appropriate sufficient conditions for the considered fractional system to be regionally controllable and, therefore, boundary regionally controllable. An example of a population density system with diffusion is given to illustrate the obtained theoretical results. Numerical simulations show that the proposed method provides satisfying results regarding two cases of the control operator.Elsevier2024-01-29T17:06:57Z2024-01-01T00:00:00Z2024info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/40343eng1007-570410.1016/j.cnsns.2023.107814Tajani, AsmaeEl Alaoui, Fatima-ZahraeTorres, Delfim F. M.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:51:38Zoai:ria.ua.pt:10773/40343Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:22:45.270442Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations |
title |
Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations |
spellingShingle |
Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations Tajani, Asmae Time-fractional systems Semilinear systems Boundary regional controllability Fractional diffusion Logistic growth law model |
title_short |
Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations |
title_full |
Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations |
title_fullStr |
Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations |
title_full_unstemmed |
Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations |
title_sort |
Boundary Controllability of Riemann-Liouville Fractional Semilinear Equations |
author |
Tajani, Asmae |
author_facet |
Tajani, Asmae El Alaoui, Fatima-Zahrae Torres, Delfim F. M. |
author_role |
author |
author2 |
El Alaoui, Fatima-Zahrae Torres, Delfim F. M. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Tajani, Asmae El Alaoui, Fatima-Zahrae Torres, Delfim F. M. |
dc.subject.por.fl_str_mv |
Time-fractional systems Semilinear systems Boundary regional controllability Fractional diffusion Logistic growth law model |
topic |
Time-fractional systems Semilinear systems Boundary regional controllability Fractional diffusion Logistic growth law model |
description |
We study the boundary regional controllability of a class of Riemann-Liouville fractional semilinear sub-diffusion systems with boundary Neumann conditions. The result is obtained by using semi-group theory, the fractional Hilbert uniqueness method, and Schauder's fixed point theorem. Conditions on the order of the derivative, internal region, and on the nonlinear part are obtained. Furthermore, we present appropriate sufficient conditions for the considered fractional system to be regionally controllable and, therefore, boundary regionally controllable. An example of a population density system with diffusion is given to illustrate the obtained theoretical results. Numerical simulations show that the proposed method provides satisfying results regarding two cases of the control operator. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-29T17:06:57Z 2024-01-01T00:00:00Z 2024 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/40343 |
url |
http://hdl.handle.net/10773/40343 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1007-5704 10.1016/j.cnsns.2023.107814 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594544123281408 |