Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation

Bibliographic Details
Main Author: Ramos, Philippe E.
Publication Date: 2014
Other Authors: Cerqueira, Miguel Ângelo Parente Ribeiro, Cook, Michael, Charalampopoulos, Dimitris, Khutoryanskiy, Vitaliy V., Teixeira, J. A., Vicente, A. A.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/56618
Summary: The recommended daily intake of folate (B-complex vitamin) for an adult varies between 200 and 400 g, being the intake of folate inefficient due its extremely unstable chemical forms. One of the presented solutions is the in situ production using probiotics. However, two concerns exist for this solution: a) probiotic bacteria may need protection towards the gastric medium (encapsulation); and b) microcapsule sizes should be smaller than 100 m, to avoid modifying food texture. Alginate-based microcapsules were produced and three layers were added using the layer-by-layer technique: 1st - poly-L-lysine (0.1%); 2nd - sodium alginate (1%); 3rd - chitosan (0.03%). Confocal microscopy was used to confirm the consequent adhesion of the layers, and if they were in the correct position (the layers labelled were the first (Poly-l-lysine/FITC) and the third layer (Chitosan/Rhodamine). After production the particles where put into a 10 mL solution of KCl-HCl (pH 2) during 1 hour, at 100 rpm and then into a PBS solution (pH 7.2), during 3 hours in order to mimic the gastrointestinal tract during digestion. The average size of the particles was 21.01 ± 0.493 m and 39.84 ± 0.794 m during the process at pH 2 and at pH 7.2, respectively. The sizes were smaller than 100 m and showed a swelling capacity (particles duplicate their size upon passing from pH 2 to pH 7.2). Confocal images showed the adhesion of the different layers, also proving indirectly the existence of the second layer (not labelled). Further, after the contact with the KCl-HCl (pH 2) and PBS (7.2) media, the structure of the capsules with the layers was maintained, thus showing the robustness of this structure at pH values typical of the gastrointestinal system. Alginate microcapsules production through LbL technique showed potential for encapsulation of probiotics, allowing their protection against harsh conditions in gastrointestinal tract.
id RCAP_74a1a1312c37dfc570e757d6e2d6e42e
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/56618
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulationProbioticsFolatemicroencapsulationlayer-by-layerThe recommended daily intake of folate (B-complex vitamin) for an adult varies between 200 and 400 g, being the intake of folate inefficient due its extremely unstable chemical forms. One of the presented solutions is the in situ production using probiotics. However, two concerns exist for this solution: a) probiotic bacteria may need protection towards the gastric medium (encapsulation); and b) microcapsule sizes should be smaller than 100 m, to avoid modifying food texture. Alginate-based microcapsules were produced and three layers were added using the layer-by-layer technique: 1st - poly-L-lysine (0.1%); 2nd - sodium alginate (1%); 3rd - chitosan (0.03%). Confocal microscopy was used to confirm the consequent adhesion of the layers, and if they were in the correct position (the layers labelled were the first (Poly-l-lysine/FITC) and the third layer (Chitosan/Rhodamine). After production the particles where put into a 10 mL solution of KCl-HCl (pH 2) during 1 hour, at 100 rpm and then into a PBS solution (pH 7.2), during 3 hours in order to mimic the gastrointestinal tract during digestion. The average size of the particles was 21.01 ± 0.493 m and 39.84 ± 0.794 m during the process at pH 2 and at pH 7.2, respectively. The sizes were smaller than 100 m and showed a swelling capacity (particles duplicate their size upon passing from pH 2 to pH 7.2). Confocal images showed the adhesion of the different layers, also proving indirectly the existence of the second layer (not labelled). Further, after the contact with the KCl-HCl (pH 2) and PBS (7.2) media, the structure of the capsules with the layers was maintained, thus showing the robustness of this structure at pH values typical of the gastrointestinal system. Alginate microcapsules production through LbL technique showed potential for encapsulation of probiotics, allowing their protection against harsh conditions in gastrointestinal tract.info:eu-repo/semantics/publishedVersionUniversidade do MinhoRamos, Philippe E.Cerqueira, Miguel Ângelo Parente RibeiroCook, MichaelCharalampopoulos, DimitrisKhutoryanskiy, Vitaliy V.Teixeira, J. A.Vicente, A. A.2014-10-152014-10-15T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/56618engRamos, Philippe E.; Cerqueira, Miguel A.; Cook, Michael; Charalampopoulos, Dimitris; Khutoryanskiy, Vitaliy V.; Teixeira, José A.; Vicente, António A., Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation. 1st Congress on Food Structure Design. Porto, Portugal, 15-17 Oct, 77-77, 2014. ISBN: 978-989-97478-5-2978-989-97478-5-2https://www.skyros-congressos.pt/foodstructure/info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:25:40Zoai:repositorium.sdum.uminho.pt:1822/56618Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:18:09.582969Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation
title Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation
spellingShingle Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation
Ramos, Philippe E.
Probiotics
Folate
microencapsulation
layer-by-layer
title_short Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation
title_full Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation
title_fullStr Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation
title_full_unstemmed Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation
title_sort Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation
author Ramos, Philippe E.
author_facet Ramos, Philippe E.
Cerqueira, Miguel Ângelo Parente Ribeiro
Cook, Michael
Charalampopoulos, Dimitris
Khutoryanskiy, Vitaliy V.
Teixeira, J. A.
Vicente, A. A.
author_role author
author2 Cerqueira, Miguel Ângelo Parente Ribeiro
Cook, Michael
Charalampopoulos, Dimitris
Khutoryanskiy, Vitaliy V.
Teixeira, J. A.
Vicente, A. A.
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ramos, Philippe E.
Cerqueira, Miguel Ângelo Parente Ribeiro
Cook, Michael
Charalampopoulos, Dimitris
Khutoryanskiy, Vitaliy V.
Teixeira, J. A.
Vicente, A. A.
dc.subject.por.fl_str_mv Probiotics
Folate
microencapsulation
layer-by-layer
topic Probiotics
Folate
microencapsulation
layer-by-layer
description The recommended daily intake of folate (B-complex vitamin) for an adult varies between 200 and 400 g, being the intake of folate inefficient due its extremely unstable chemical forms. One of the presented solutions is the in situ production using probiotics. However, two concerns exist for this solution: a) probiotic bacteria may need protection towards the gastric medium (encapsulation); and b) microcapsule sizes should be smaller than 100 m, to avoid modifying food texture. Alginate-based microcapsules were produced and three layers were added using the layer-by-layer technique: 1st - poly-L-lysine (0.1%); 2nd - sodium alginate (1%); 3rd - chitosan (0.03%). Confocal microscopy was used to confirm the consequent adhesion of the layers, and if they were in the correct position (the layers labelled were the first (Poly-l-lysine/FITC) and the third layer (Chitosan/Rhodamine). After production the particles where put into a 10 mL solution of KCl-HCl (pH 2) during 1 hour, at 100 rpm and then into a PBS solution (pH 7.2), during 3 hours in order to mimic the gastrointestinal tract during digestion. The average size of the particles was 21.01 ± 0.493 m and 39.84 ± 0.794 m during the process at pH 2 and at pH 7.2, respectively. The sizes were smaller than 100 m and showed a swelling capacity (particles duplicate their size upon passing from pH 2 to pH 7.2). Confocal images showed the adhesion of the different layers, also proving indirectly the existence of the second layer (not labelled). Further, after the contact with the KCl-HCl (pH 2) and PBS (7.2) media, the structure of the capsules with the layers was maintained, thus showing the robustness of this structure at pH values typical of the gastrointestinal system. Alginate microcapsules production through LbL technique showed potential for encapsulation of probiotics, allowing their protection against harsh conditions in gastrointestinal tract.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-15
2014-10-15T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/56618
url http://hdl.handle.net/1822/56618
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ramos, Philippe E.; Cerqueira, Miguel A.; Cook, Michael; Charalampopoulos, Dimitris; Khutoryanskiy, Vitaliy V.; Teixeira, José A.; Vicente, António A., Layer-by-layer microcarrier production and characterization as a model to probiotics microencapsulation. 1st Congress on Food Structure Design. Porto, Portugal, 15-17 Oct, 77-77, 2014. ISBN: 978-989-97478-5-2
978-989-97478-5-2
https://www.skyros-congressos.pt/foodstructure/
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595229330997248