Drazin-Moore-Penrose invertibility in rings
Main Author: | |
---|---|
Publication Date: | 2004 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/1822/1516 |
Summary: | Characterizations are given for elements in an arbitrary ring with involution, having a group inverse and a Moore-Penrose inverse that are equal and the difference between these elements and EP-elements is explained. The results are also generalized to elements for which a power has a Moore-Penrose inverse and a group inverse that are equal. As an application we consider the ring of square matrices of order $m$ over a projective free ring $R$ with involution such that $R^m$ is a module of finite length, providing a new characterization for range-Hermitian matrices over the complexes. |
id |
RCAP_7248a2c70d6ba3874b9c72b550f0439d |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/1516 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Drazin-Moore-Penrose invertibility in ringsDrazinMoore-PenroseGeneralized inversesEP elementsCore nilpotent decompositionFitting decompositionScience & TechnologyCharacterizations are given for elements in an arbitrary ring with involution, having a group inverse and a Moore-Penrose inverse that are equal and the difference between these elements and EP-elements is explained. The results are also generalized to elements for which a power has a Moore-Penrose inverse and a group inverse that are equal. As an application we consider the ring of square matrices of order $m$ over a projective free ring $R$ with involution such that $R^m$ is a module of finite length, providing a new characterization for range-Hermitian matrices over the complexes.Fundação para a Ciência e a Tecnologia (FCT) - Programa Operacional "Ciência, Tecnologia, Inovação" (POCTI).Centro de Matemática da Universidade do Minho (CMAT).ElsevierUniversidade do MinhoPatrício, PedroPuystjens, Roland20042004-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/1516eng"Linear algebra and its applications". ISSN 0024-3795. 389 (2004) 159-173.0024-379510.1016/j.laa.2004.04.006info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T05:06:40Zoai:repositorium.sdum.uminho.pt:1822/1516Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:04:40.143655Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Drazin-Moore-Penrose invertibility in rings |
title |
Drazin-Moore-Penrose invertibility in rings |
spellingShingle |
Drazin-Moore-Penrose invertibility in rings Patrício, Pedro Drazin Moore-Penrose Generalized inverses EP elements Core nilpotent decomposition Fitting decomposition Science & Technology |
title_short |
Drazin-Moore-Penrose invertibility in rings |
title_full |
Drazin-Moore-Penrose invertibility in rings |
title_fullStr |
Drazin-Moore-Penrose invertibility in rings |
title_full_unstemmed |
Drazin-Moore-Penrose invertibility in rings |
title_sort |
Drazin-Moore-Penrose invertibility in rings |
author |
Patrício, Pedro |
author_facet |
Patrício, Pedro Puystjens, Roland |
author_role |
author |
author2 |
Puystjens, Roland |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Patrício, Pedro Puystjens, Roland |
dc.subject.por.fl_str_mv |
Drazin Moore-Penrose Generalized inverses EP elements Core nilpotent decomposition Fitting decomposition Science & Technology |
topic |
Drazin Moore-Penrose Generalized inverses EP elements Core nilpotent decomposition Fitting decomposition Science & Technology |
description |
Characterizations are given for elements in an arbitrary ring with involution, having a group inverse and a Moore-Penrose inverse that are equal and the difference between these elements and EP-elements is explained. The results are also generalized to elements for which a power has a Moore-Penrose inverse and a group inverse that are equal. As an application we consider the ring of square matrices of order $m$ over a projective free ring $R$ with involution such that $R^m$ is a module of finite length, providing a new characterization for range-Hermitian matrices over the complexes. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004 2004-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/1516 |
url |
https://hdl.handle.net/1822/1516 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Linear algebra and its applications". ISSN 0024-3795. 389 (2004) 159-173. 0024-3795 10.1016/j.laa.2004.04.006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595721458122752 |