Calibration of odometry systems in robotic vehicles

Detalhes bibliográficos
Autor(a) principal: Silva, Bruno Filipe Amaral Vieira da
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/43004
Resumo: Accurate odometry is essential for autonomous navigation in robotic vehicles. Traditional encoder odometry and visual odometry are commonly used methods, each with distinct advantages and limitations. Encoder odometry, relying on wheel rotations, often suffers from cumulative errors and slippage. Visual odometry, which uses camera images to estimate movement, can be affected by environmental factors such as lighting and texture. This dissertation aims to fill a gap in the current state of the art by developing a novel methodology to calibrate robotic systems with erroneous odometry data. Building on the Atomic Transformations Optimization Method (ATOM) developed by the Laboratório de Automação e Robótica at the University of Aveiro, this work proposes enhancements to accommodate and correct odometry inaccuracies, by estimating the transformations provided by these systems. ATOM approaches the calibration problem as an extended optimization task, estimating the poses of both sensors and calibration patterns through a combination of indivisible geometric transformations, referred to as atomic transformations. Unlike pairwise calibration methods, ATOM employs a sensor-to-pattern paradigm, which significantly reduces the need for numerous error functions for each sensor pair, thereby generalizing the calibration process and making it applicable to a wide variety of robotic systems. The methodology is validated through extensive experiments on both a simulated robot (SOFTBOT) and a real robot (ZAU). The simulation results demonstrated significant improvements in calibration accuracy, confirming the efficacy of the proposed approach under controlled conditions. However, real-world experiments with ZAU revealed challenges due to unexpectedly large odometry errors, which lead to the incapability of calibrating the system. Despite these challenges, the findings contribute to advancing the field of robotic vehicles odometry calibration, providing a reliable approach for enhancing the performance of autonomous robotic systems.
id RCAP_6d49f76181fc6ff623d7e57b71213dfa
oai_identifier_str oai:ria.ua.pt:10773/43004
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Calibration of odometry systems in robotic vehiclesExtrinsic calibrationOdometryAtomic transformationsOptimizationMobile robotsAccurate odometry is essential for autonomous navigation in robotic vehicles. Traditional encoder odometry and visual odometry are commonly used methods, each with distinct advantages and limitations. Encoder odometry, relying on wheel rotations, often suffers from cumulative errors and slippage. Visual odometry, which uses camera images to estimate movement, can be affected by environmental factors such as lighting and texture. This dissertation aims to fill a gap in the current state of the art by developing a novel methodology to calibrate robotic systems with erroneous odometry data. Building on the Atomic Transformations Optimization Method (ATOM) developed by the Laboratório de Automação e Robótica at the University of Aveiro, this work proposes enhancements to accommodate and correct odometry inaccuracies, by estimating the transformations provided by these systems. ATOM approaches the calibration problem as an extended optimization task, estimating the poses of both sensors and calibration patterns through a combination of indivisible geometric transformations, referred to as atomic transformations. Unlike pairwise calibration methods, ATOM employs a sensor-to-pattern paradigm, which significantly reduces the need for numerous error functions for each sensor pair, thereby generalizing the calibration process and making it applicable to a wide variety of robotic systems. The methodology is validated through extensive experiments on both a simulated robot (SOFTBOT) and a real robot (ZAU). The simulation results demonstrated significant improvements in calibration accuracy, confirming the efficacy of the proposed approach under controlled conditions. However, real-world experiments with ZAU revealed challenges due to unexpectedly large odometry errors, which lead to the incapability of calibrating the system. Despite these challenges, the findings contribute to advancing the field of robotic vehicles odometry calibration, providing a reliable approach for enhancing the performance of autonomous robotic systems.Uma hodometria precisa é essencial para a navegação autónoma em veículos robóticos. Métodos tradicionais de hodometria, como a hodometria por encoder e a hodometria visual, são amplamente utilizados, cada um com vantagens e limitações distintas. A hodometria por encoder, que se baseia na rotação das rodas, muitas vezes sofre de erros acumulativos e derrapagem. A hodometria visual, que usa imagens de câmeras para estimar o movimento, pode ser afetada por fatores ambientais como iluminação e textura. Esta tese visa preencher uma lacuna no estado da arte ao desenvolver uma nova metodologia para calibrar sistemas robóticos com dados de hodometria errôneos. Com base na framework de calibração Atomic Transformations Optimization Method (ATOM), desenvolvido pelo Laboratório de Automação e Robótica da Universidade de Aveiro, este trabalho propõe melhorias para acomodar e corrigir imprecisões na hodometria, estimando as transformações dadas por esta. O ATOM aborda o problema de calibração como uma tarefa de otimização estendida, estimando as poses de sensores e padrões de calibração através de uma combinação de transformações geométricas indivisíveis, chamadas de transformações atómicas. Ao contrário dos métodos de calibração par-a-par, o ATOM emprega um paradigma sensor-para-padrão, o que reduz significativamente a necessidade de inúmeras funções objetivos para cada par de sensores, generalizando assim o processo de calibração e tornando-o aplicável a uma ampla variedade de sistemas robóticos. A metodologia proposta pelo autor é validada através de extensas experiências num robô simulado (SOFTBOT) e num robô real (ZAU). Os resultados das simulações demonstraram melhorias significativas na precisão da calibração, confirmando a eficácia da abordagem proposta em condições controladas. No entanto, as experiências no mundo real com o ZAU revelaram desafios devido a grandes erros inesperados na hodometria, o que levou à incapacidade de calibrar o sistema. Apesar desses desafios, os resultados contribuem para o avanço na calibração de hodometria em veículos robóticos, fornecendo uma abordagem para melhorar o desempenho de sistemas robóticos autónomos.2024-12-02T12:01:36Z2024-06-25T00:00:00Z2024-06-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/43004engSilva, Bruno Filipe Amaral Vieira dainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-12-09T01:47:29Zoai:ria.ua.pt:10773/43004Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:18:00.243998Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Calibration of odometry systems in robotic vehicles
title Calibration of odometry systems in robotic vehicles
spellingShingle Calibration of odometry systems in robotic vehicles
Silva, Bruno Filipe Amaral Vieira da
Extrinsic calibration
Odometry
Atomic transformations
Optimization
Mobile robots
title_short Calibration of odometry systems in robotic vehicles
title_full Calibration of odometry systems in robotic vehicles
title_fullStr Calibration of odometry systems in robotic vehicles
title_full_unstemmed Calibration of odometry systems in robotic vehicles
title_sort Calibration of odometry systems in robotic vehicles
author Silva, Bruno Filipe Amaral Vieira da
author_facet Silva, Bruno Filipe Amaral Vieira da
author_role author
dc.contributor.author.fl_str_mv Silva, Bruno Filipe Amaral Vieira da
dc.subject.por.fl_str_mv Extrinsic calibration
Odometry
Atomic transformations
Optimization
Mobile robots
topic Extrinsic calibration
Odometry
Atomic transformations
Optimization
Mobile robots
description Accurate odometry is essential for autonomous navigation in robotic vehicles. Traditional encoder odometry and visual odometry are commonly used methods, each with distinct advantages and limitations. Encoder odometry, relying on wheel rotations, often suffers from cumulative errors and slippage. Visual odometry, which uses camera images to estimate movement, can be affected by environmental factors such as lighting and texture. This dissertation aims to fill a gap in the current state of the art by developing a novel methodology to calibrate robotic systems with erroneous odometry data. Building on the Atomic Transformations Optimization Method (ATOM) developed by the Laboratório de Automação e Robótica at the University of Aveiro, this work proposes enhancements to accommodate and correct odometry inaccuracies, by estimating the transformations provided by these systems. ATOM approaches the calibration problem as an extended optimization task, estimating the poses of both sensors and calibration patterns through a combination of indivisible geometric transformations, referred to as atomic transformations. Unlike pairwise calibration methods, ATOM employs a sensor-to-pattern paradigm, which significantly reduces the need for numerous error functions for each sensor pair, thereby generalizing the calibration process and making it applicable to a wide variety of robotic systems. The methodology is validated through extensive experiments on both a simulated robot (SOFTBOT) and a real robot (ZAU). The simulation results demonstrated significant improvements in calibration accuracy, confirming the efficacy of the proposed approach under controlled conditions. However, real-world experiments with ZAU revealed challenges due to unexpectedly large odometry errors, which lead to the incapability of calibrating the system. Despite these challenges, the findings contribute to advancing the field of robotic vehicles odometry calibration, providing a reliable approach for enhancing the performance of autonomous robotic systems.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-02T12:01:36Z
2024-06-25T00:00:00Z
2024-06-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/43004
url http://hdl.handle.net/10773/43004
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598001228021760