Calibration of odometry systems in robotic vehicles
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2024 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10773/43004 |
Resumo: | Accurate odometry is essential for autonomous navigation in robotic vehicles. Traditional encoder odometry and visual odometry are commonly used methods, each with distinct advantages and limitations. Encoder odometry, relying on wheel rotations, often suffers from cumulative errors and slippage. Visual odometry, which uses camera images to estimate movement, can be affected by environmental factors such as lighting and texture. This dissertation aims to fill a gap in the current state of the art by developing a novel methodology to calibrate robotic systems with erroneous odometry data. Building on the Atomic Transformations Optimization Method (ATOM) developed by the Laboratório de Automação e Robótica at the University of Aveiro, this work proposes enhancements to accommodate and correct odometry inaccuracies, by estimating the transformations provided by these systems. ATOM approaches the calibration problem as an extended optimization task, estimating the poses of both sensors and calibration patterns through a combination of indivisible geometric transformations, referred to as atomic transformations. Unlike pairwise calibration methods, ATOM employs a sensor-to-pattern paradigm, which significantly reduces the need for numerous error functions for each sensor pair, thereby generalizing the calibration process and making it applicable to a wide variety of robotic systems. The methodology is validated through extensive experiments on both a simulated robot (SOFTBOT) and a real robot (ZAU). The simulation results demonstrated significant improvements in calibration accuracy, confirming the efficacy of the proposed approach under controlled conditions. However, real-world experiments with ZAU revealed challenges due to unexpectedly large odometry errors, which lead to the incapability of calibrating the system. Despite these challenges, the findings contribute to advancing the field of robotic vehicles odometry calibration, providing a reliable approach for enhancing the performance of autonomous robotic systems. |
| id |
RCAP_6d49f76181fc6ff623d7e57b71213dfa |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/43004 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Calibration of odometry systems in robotic vehiclesExtrinsic calibrationOdometryAtomic transformationsOptimizationMobile robotsAccurate odometry is essential for autonomous navigation in robotic vehicles. Traditional encoder odometry and visual odometry are commonly used methods, each with distinct advantages and limitations. Encoder odometry, relying on wheel rotations, often suffers from cumulative errors and slippage. Visual odometry, which uses camera images to estimate movement, can be affected by environmental factors such as lighting and texture. This dissertation aims to fill a gap in the current state of the art by developing a novel methodology to calibrate robotic systems with erroneous odometry data. Building on the Atomic Transformations Optimization Method (ATOM) developed by the Laboratório de Automação e Robótica at the University of Aveiro, this work proposes enhancements to accommodate and correct odometry inaccuracies, by estimating the transformations provided by these systems. ATOM approaches the calibration problem as an extended optimization task, estimating the poses of both sensors and calibration patterns through a combination of indivisible geometric transformations, referred to as atomic transformations. Unlike pairwise calibration methods, ATOM employs a sensor-to-pattern paradigm, which significantly reduces the need for numerous error functions for each sensor pair, thereby generalizing the calibration process and making it applicable to a wide variety of robotic systems. The methodology is validated through extensive experiments on both a simulated robot (SOFTBOT) and a real robot (ZAU). The simulation results demonstrated significant improvements in calibration accuracy, confirming the efficacy of the proposed approach under controlled conditions. However, real-world experiments with ZAU revealed challenges due to unexpectedly large odometry errors, which lead to the incapability of calibrating the system. Despite these challenges, the findings contribute to advancing the field of robotic vehicles odometry calibration, providing a reliable approach for enhancing the performance of autonomous robotic systems.Uma hodometria precisa é essencial para a navegação autónoma em veículos robóticos. Métodos tradicionais de hodometria, como a hodometria por encoder e a hodometria visual, são amplamente utilizados, cada um com vantagens e limitações distintas. A hodometria por encoder, que se baseia na rotação das rodas, muitas vezes sofre de erros acumulativos e derrapagem. A hodometria visual, que usa imagens de câmeras para estimar o movimento, pode ser afetada por fatores ambientais como iluminação e textura. Esta tese visa preencher uma lacuna no estado da arte ao desenvolver uma nova metodologia para calibrar sistemas robóticos com dados de hodometria errôneos. Com base na framework de calibração Atomic Transformations Optimization Method (ATOM), desenvolvido pelo Laboratório de Automação e Robótica da Universidade de Aveiro, este trabalho propõe melhorias para acomodar e corrigir imprecisões na hodometria, estimando as transformações dadas por esta. O ATOM aborda o problema de calibração como uma tarefa de otimização estendida, estimando as poses de sensores e padrões de calibração através de uma combinação de transformações geométricas indivisíveis, chamadas de transformações atómicas. Ao contrário dos métodos de calibração par-a-par, o ATOM emprega um paradigma sensor-para-padrão, o que reduz significativamente a necessidade de inúmeras funções objetivos para cada par de sensores, generalizando assim o processo de calibração e tornando-o aplicável a uma ampla variedade de sistemas robóticos. A metodologia proposta pelo autor é validada através de extensas experiências num robô simulado (SOFTBOT) e num robô real (ZAU). Os resultados das simulações demonstraram melhorias significativas na precisão da calibração, confirmando a eficácia da abordagem proposta em condições controladas. No entanto, as experiências no mundo real com o ZAU revelaram desafios devido a grandes erros inesperados na hodometria, o que levou à incapacidade de calibrar o sistema. Apesar desses desafios, os resultados contribuem para o avanço na calibração de hodometria em veículos robóticos, fornecendo uma abordagem para melhorar o desempenho de sistemas robóticos autónomos.2024-12-02T12:01:36Z2024-06-25T00:00:00Z2024-06-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/43004engSilva, Bruno Filipe Amaral Vieira dainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-12-09T01:47:29Zoai:ria.ua.pt:10773/43004Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:18:00.243998Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Calibration of odometry systems in robotic vehicles |
| title |
Calibration of odometry systems in robotic vehicles |
| spellingShingle |
Calibration of odometry systems in robotic vehicles Silva, Bruno Filipe Amaral Vieira da Extrinsic calibration Odometry Atomic transformations Optimization Mobile robots |
| title_short |
Calibration of odometry systems in robotic vehicles |
| title_full |
Calibration of odometry systems in robotic vehicles |
| title_fullStr |
Calibration of odometry systems in robotic vehicles |
| title_full_unstemmed |
Calibration of odometry systems in robotic vehicles |
| title_sort |
Calibration of odometry systems in robotic vehicles |
| author |
Silva, Bruno Filipe Amaral Vieira da |
| author_facet |
Silva, Bruno Filipe Amaral Vieira da |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Silva, Bruno Filipe Amaral Vieira da |
| dc.subject.por.fl_str_mv |
Extrinsic calibration Odometry Atomic transformations Optimization Mobile robots |
| topic |
Extrinsic calibration Odometry Atomic transformations Optimization Mobile robots |
| description |
Accurate odometry is essential for autonomous navigation in robotic vehicles. Traditional encoder odometry and visual odometry are commonly used methods, each with distinct advantages and limitations. Encoder odometry, relying on wheel rotations, often suffers from cumulative errors and slippage. Visual odometry, which uses camera images to estimate movement, can be affected by environmental factors such as lighting and texture. This dissertation aims to fill a gap in the current state of the art by developing a novel methodology to calibrate robotic systems with erroneous odometry data. Building on the Atomic Transformations Optimization Method (ATOM) developed by the Laboratório de Automação e Robótica at the University of Aveiro, this work proposes enhancements to accommodate and correct odometry inaccuracies, by estimating the transformations provided by these systems. ATOM approaches the calibration problem as an extended optimization task, estimating the poses of both sensors and calibration patterns through a combination of indivisible geometric transformations, referred to as atomic transformations. Unlike pairwise calibration methods, ATOM employs a sensor-to-pattern paradigm, which significantly reduces the need for numerous error functions for each sensor pair, thereby generalizing the calibration process and making it applicable to a wide variety of robotic systems. The methodology is validated through extensive experiments on both a simulated robot (SOFTBOT) and a real robot (ZAU). The simulation results demonstrated significant improvements in calibration accuracy, confirming the efficacy of the proposed approach under controlled conditions. However, real-world experiments with ZAU revealed challenges due to unexpectedly large odometry errors, which lead to the incapability of calibrating the system. Despite these challenges, the findings contribute to advancing the field of robotic vehicles odometry calibration, providing a reliable approach for enhancing the performance of autonomous robotic systems. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-12-02T12:01:36Z 2024-06-25T00:00:00Z 2024-06-25 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/43004 |
| url |
http://hdl.handle.net/10773/43004 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598001228021760 |