Real-Time Forecasting by Bio-Inspired Models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | , , |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/1822/352 |
Resumo: | In recent years, bio-inspired methods for problem solving, such as Artificial Neural Networks (ANNs) or Genetic and Evolutionary Algorithms (GEAs), have gained an increasing acceptance as alternative approaches for forecasting, due to advantages such as nonlinear learning and adaptive search. The present work reports the use of these techniques for Real-Time Forecasting (RTF), where there is a need for an autonomous system capable of fast replies. Comparisons among bio-inspired and conventional approaches (e.g., Exponential Smoothing), revealed better forecasting performances for the evolutionary and connectionist models.) |
id |
RCAP_6b05b8e15e433c93b54344bb512c33ce |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/352 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Real-Time Forecasting by Bio-Inspired ModelsArtificial Neural NetworksExponential SmoothingGenetic and Evolutionary AlgorithmsReal-Time ForecastingTime SeriesIn recent years, bio-inspired methods for problem solving, such as Artificial Neural Networks (ANNs) or Genetic and Evolutionary Algorithms (GEAs), have gained an increasing acceptance as alternative approaches for forecasting, due to advantages such as nonlinear learning and adaptive search. The present work reports the use of these techniques for Real-Time Forecasting (RTF), where there is a need for an autonomous system capable of fast replies. Comparisons among bio-inspired and conventional approaches (e.g., Exponential Smoothing), revealed better forecasting performances for the evolutionary and connectionist models.)Universidade do MinhoCortez, PauloRocha, MiguelAllegro, Fernando SollariNeves, José20022002-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/352engHAMZA, M. H., ed. lit. - “Artificial Intelligence and Applications : proceedings of the IASTED International Conference, 2, Málaga, Spain, 2002”. Anaheim ; Calgary ; Zurich : IASTED ACTA Press, 2002. p. 52-57.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:33:45Zoai:repositorium.sdum.uminho.pt:1822/352Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:57:03.673277Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Real-Time Forecasting by Bio-Inspired Models |
title |
Real-Time Forecasting by Bio-Inspired Models |
spellingShingle |
Real-Time Forecasting by Bio-Inspired Models Cortez, Paulo Artificial Neural Networks Exponential Smoothing Genetic and Evolutionary Algorithms Real-Time Forecasting Time Series |
title_short |
Real-Time Forecasting by Bio-Inspired Models |
title_full |
Real-Time Forecasting by Bio-Inspired Models |
title_fullStr |
Real-Time Forecasting by Bio-Inspired Models |
title_full_unstemmed |
Real-Time Forecasting by Bio-Inspired Models |
title_sort |
Real-Time Forecasting by Bio-Inspired Models |
author |
Cortez, Paulo |
author_facet |
Cortez, Paulo Rocha, Miguel Allegro, Fernando Sollari Neves, José |
author_role |
author |
author2 |
Rocha, Miguel Allegro, Fernando Sollari Neves, José |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Cortez, Paulo Rocha, Miguel Allegro, Fernando Sollari Neves, José |
dc.subject.por.fl_str_mv |
Artificial Neural Networks Exponential Smoothing Genetic and Evolutionary Algorithms Real-Time Forecasting Time Series |
topic |
Artificial Neural Networks Exponential Smoothing Genetic and Evolutionary Algorithms Real-Time Forecasting Time Series |
description |
In recent years, bio-inspired methods for problem solving, such as Artificial Neural Networks (ANNs) or Genetic and Evolutionary Algorithms (GEAs), have gained an increasing acceptance as alternative approaches for forecasting, due to advantages such as nonlinear learning and adaptive search. The present work reports the use of these techniques for Real-Time Forecasting (RTF), where there is a need for an autonomous system capable of fast replies. Comparisons among bio-inspired and conventional approaches (e.g., Exponential Smoothing), revealed better forecasting performances for the evolutionary and connectionist models.) |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002 2002-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/352 |
url |
http://hdl.handle.net/1822/352 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
HAMZA, M. H., ed. lit. - “Artificial Intelligence and Applications : proceedings of the IASTED International Conference, 2, Málaga, Spain, 2002”. Anaheim ; Calgary ; Zurich : IASTED ACTA Press, 2002. p. 52-57. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595644097331200 |