Urban habitats and food insecurity
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/154833 |
Summary: | Vaz, E., Damásio, B., Bação, F., Shaker, R. R., & Penfound, E. (2023). Urban habitats and food insecurity: lessons learned throughout a pandemic. Habitat International, 135, 1-11. [102779]. https://doi.org/10.1016/j.habitatint.2023.102779 |
id |
RCAP_679186b8e45d3cf0a9781cd5f73be74c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/154833 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Urban habitats and food insecurityLessons learned throughout a pandemicUrban StudiesSDG 2 - Zero HungerSDG 3 - Good Health and Well-beingVaz, E., Damásio, B., Bação, F., Shaker, R. R., & Penfound, E. (2023). Urban habitats and food insecurity: lessons learned throughout a pandemic. Habitat International, 135, 1-11. [102779]. https://doi.org/10.1016/j.habitatint.2023.102779Background An increasing amount of literature raises the issue of food deserts and urban heterogeneity in larger metropolitan cores throughout North America. Specific to Canadian cities, the disparity between access to health, education, and affordable food is of growing concern. Recently, these drivers seem to be significantly linked to the propagation of COVID-19. This paper explores the spatially-explicit dynamics of food deserts in Toronto, by integrating Geographic Information Systems and machine learning to understand the clusters of food deserts. The integration of spatial analysis with self-organizing maps (SOM) offers insights on the relation between neighborhoods, geodemographic profiles and urban characteristics, and whether one might expect consequences of food insecurity given COVID-19. Methods The paper starts out with developing a machine learning algorithm based on SOM to define meaningful clusters within the hedonic dataset. Further to this, an exploratory regression was built per cluster as to allow an exploratory spatial analysis to derive an explanatory framework for the key characteristics of socio-economic profiles within the Greater Toronto Area and impacts of SARS-CoV-2. Results The findings suggest that there are clear spatial profiles within the urban core of Toronto in regards to food deserts, showing a direct relation between socioeconomic characteristics and the results on environmental injustice and livability. These profiles are strongly linked with the areas of COVID-19 occurrence, and share a very similar socio-demographic profile, particularly in regards to young and lower income families. Conclusion There are several food deserts currently in Toronto, Ontario. The integration of policies that involve public health and spatial decision-support, particularly when linked to machine learning to aggregate characteristics of big data, establish a multi-functional understanding of the complexity of food security. This has a direct relation with diet, environment, and the opportunity to enhance subjective well-being in city cores.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNVaz, EricDamásio, BrunoBação, FernandoShaker, Richard RossPenfound, Elissa2025-03-29T01:32:48Z2023-05-012023-05-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11application/pdfhttp://hdl.handle.net/10362/154833eng0197-3975PURE: 57317631https://doi.org/10.1016/j.habitatint.2023.102779info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-31T01:51:18Zoai:run.unl.pt:10362/154833Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:42:53.427970Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Urban habitats and food insecurity Lessons learned throughout a pandemic |
title |
Urban habitats and food insecurity |
spellingShingle |
Urban habitats and food insecurity Vaz, Eric Urban Studies SDG 2 - Zero Hunger SDG 3 - Good Health and Well-being |
title_short |
Urban habitats and food insecurity |
title_full |
Urban habitats and food insecurity |
title_fullStr |
Urban habitats and food insecurity |
title_full_unstemmed |
Urban habitats and food insecurity |
title_sort |
Urban habitats and food insecurity |
author |
Vaz, Eric |
author_facet |
Vaz, Eric Damásio, Bruno Bação, Fernando Shaker, Richard Ross Penfound, Elissa |
author_role |
author |
author2 |
Damásio, Bruno Bação, Fernando Shaker, Richard Ross Penfound, Elissa |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Vaz, Eric Damásio, Bruno Bação, Fernando Shaker, Richard Ross Penfound, Elissa |
dc.subject.por.fl_str_mv |
Urban Studies SDG 2 - Zero Hunger SDG 3 - Good Health and Well-being |
topic |
Urban Studies SDG 2 - Zero Hunger SDG 3 - Good Health and Well-being |
description |
Vaz, E., Damásio, B., Bação, F., Shaker, R. R., & Penfound, E. (2023). Urban habitats and food insecurity: lessons learned throughout a pandemic. Habitat International, 135, 1-11. [102779]. https://doi.org/10.1016/j.habitatint.2023.102779 |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-05-01 2023-05-01T00:00:00Z 2025-03-29T01:32:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/154833 |
url |
http://hdl.handle.net/10362/154833 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0197-3975 PURE: 57317631 https://doi.org/10.1016/j.habitatint.2023.102779 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596913934401536 |