Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine Learning

Detalhes bibliográficos
Autor(a) principal: Soares, Pedro Francisco de Borges Castro de Rodrigues
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.22/23993
Resumo: O crescimento exponencial do comércio eletrónico trouxe inúmeras vantagens e oportunidades ao facilitar o estilo de vida dos seres humanos. No entanto, deu também origem a um grave problema: a fraude online. Com o propósito de colmatar este problema, este trabalho aborda a necessidade de desenvolver sistemas de deteção de fraude complexos no âmbito do comércio eletrónico. Após uma revisão abrangente da literatura, foram identificadas e implementadas técnicas que contribuíram para a melhoria dos projetos existentes, permitindo uma análise comparativa mais precisa. Neste contexto, os algoritmos de RF, LR, SVM, KNN, DT, LSTM e CNN, por serem os mais adequados a sistemas de classificação pela sua versatilidade e capacidade de aprender padrões complexos nos dados, foram aplicados a três conjuntos de dados distintos. Para avaliar rigorosamente os modelos propostos, o conjunto de dados foi dividido em 70% de dados para treino e os restantes 30% para teste. Cada um dos conjuntos de dados apresenta características específicas, de forma a avaliar o impacto de técnicas de oversampling e undersampling. Os algoritmos foram aplicados também aos mesmos conjuntos com os dados normalizados, para inferir quais os modelos que beneficiam desta normalização. Os resultados demonstraram que os modelos RF e CNN apresentaram um desempenho superior em comparação com os restantes algoritmos testados. Estes algoritmos foram posteriormente otimizados com a exploração dos hiper-parâmetros respetivos, o que permitiu melhorar o desempenho do modelo e, por sua vez, alcançar resultados de maior qualidade. A utilização de inteligência artificial na deteção de fraude no comércio eletrónico é fundamental para proteger os interesses tanto das empresas como dos consumidores. Este trabalho teve como foco principal contribuir para o avanço dos sistemas de deteção de transações fraudulentas ao fornecer informações sobre pontos positivos e negativos de vários algoritmos de machine learning no contexto do problema em questão.
id RCAP_66a6ddaaade3c9e62b40175ece265792
oai_identifier_str oai:recipp.ipp.pt:10400.22/23993
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine LearningArtificial IntelligenceE-CommerceOnline FraudFraud DetectionMachine LearningDeep LearningClassification SystemsO crescimento exponencial do comércio eletrónico trouxe inúmeras vantagens e oportunidades ao facilitar o estilo de vida dos seres humanos. No entanto, deu também origem a um grave problema: a fraude online. Com o propósito de colmatar este problema, este trabalho aborda a necessidade de desenvolver sistemas de deteção de fraude complexos no âmbito do comércio eletrónico. Após uma revisão abrangente da literatura, foram identificadas e implementadas técnicas que contribuíram para a melhoria dos projetos existentes, permitindo uma análise comparativa mais precisa. Neste contexto, os algoritmos de RF, LR, SVM, KNN, DT, LSTM e CNN, por serem os mais adequados a sistemas de classificação pela sua versatilidade e capacidade de aprender padrões complexos nos dados, foram aplicados a três conjuntos de dados distintos. Para avaliar rigorosamente os modelos propostos, o conjunto de dados foi dividido em 70% de dados para treino e os restantes 30% para teste. Cada um dos conjuntos de dados apresenta características específicas, de forma a avaliar o impacto de técnicas de oversampling e undersampling. Os algoritmos foram aplicados também aos mesmos conjuntos com os dados normalizados, para inferir quais os modelos que beneficiam desta normalização. Os resultados demonstraram que os modelos RF e CNN apresentaram um desempenho superior em comparação com os restantes algoritmos testados. Estes algoritmos foram posteriormente otimizados com a exploração dos hiper-parâmetros respetivos, o que permitiu melhorar o desempenho do modelo e, por sua vez, alcançar resultados de maior qualidade. A utilização de inteligência artificial na deteção de fraude no comércio eletrónico é fundamental para proteger os interesses tanto das empresas como dos consumidores. Este trabalho teve como foco principal contribuir para o avanço dos sistemas de deteção de transações fraudulentas ao fornecer informações sobre pontos positivos e negativos de vários algoritmos de machine learning no contexto do problema em questão.Martins, António Constantino Lopes MartinsREPOSITÓRIO P.PORTOSoares, Pedro Francisco de Borges Castro de Rodrigues2023-11-27T14:36:54Z2023-10-272023-10-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/23993urn:tid:203380924porinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:12:34Zoai:recipp.ipp.pt:10400.22/23993Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:41:52.238961Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine Learning
title Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine Learning
spellingShingle Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine Learning
Soares, Pedro Francisco de Borges Castro de Rodrigues
Artificial Intelligence
E-Commerce
Online Fraud
Fraud Detection
Machine Learning
Deep Learning
Classification Systems
title_short Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine Learning
title_full Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine Learning
title_fullStr Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine Learning
title_full_unstemmed Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine Learning
title_sort Sistema de Deteção de Transações Fraudulentas no e-commerce através de Machine Learning
author Soares, Pedro Francisco de Borges Castro de Rodrigues
author_facet Soares, Pedro Francisco de Borges Castro de Rodrigues
author_role author
dc.contributor.none.fl_str_mv Martins, António Constantino Lopes Martins
REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Soares, Pedro Francisco de Borges Castro de Rodrigues
dc.subject.por.fl_str_mv Artificial Intelligence
E-Commerce
Online Fraud
Fraud Detection
Machine Learning
Deep Learning
Classification Systems
topic Artificial Intelligence
E-Commerce
Online Fraud
Fraud Detection
Machine Learning
Deep Learning
Classification Systems
description O crescimento exponencial do comércio eletrónico trouxe inúmeras vantagens e oportunidades ao facilitar o estilo de vida dos seres humanos. No entanto, deu também origem a um grave problema: a fraude online. Com o propósito de colmatar este problema, este trabalho aborda a necessidade de desenvolver sistemas de deteção de fraude complexos no âmbito do comércio eletrónico. Após uma revisão abrangente da literatura, foram identificadas e implementadas técnicas que contribuíram para a melhoria dos projetos existentes, permitindo uma análise comparativa mais precisa. Neste contexto, os algoritmos de RF, LR, SVM, KNN, DT, LSTM e CNN, por serem os mais adequados a sistemas de classificação pela sua versatilidade e capacidade de aprender padrões complexos nos dados, foram aplicados a três conjuntos de dados distintos. Para avaliar rigorosamente os modelos propostos, o conjunto de dados foi dividido em 70% de dados para treino e os restantes 30% para teste. Cada um dos conjuntos de dados apresenta características específicas, de forma a avaliar o impacto de técnicas de oversampling e undersampling. Os algoritmos foram aplicados também aos mesmos conjuntos com os dados normalizados, para inferir quais os modelos que beneficiam desta normalização. Os resultados demonstraram que os modelos RF e CNN apresentaram um desempenho superior em comparação com os restantes algoritmos testados. Estes algoritmos foram posteriormente otimizados com a exploração dos hiper-parâmetros respetivos, o que permitiu melhorar o desempenho do modelo e, por sua vez, alcançar resultados de maior qualidade. A utilização de inteligência artificial na deteção de fraude no comércio eletrónico é fundamental para proteger os interesses tanto das empresas como dos consumidores. Este trabalho teve como foco principal contribuir para o avanço dos sistemas de deteção de transações fraudulentas ao fornecer informações sobre pontos positivos e negativos de vários algoritmos de machine learning no contexto do problema em questão.
publishDate 2023
dc.date.none.fl_str_mv 2023-11-27T14:36:54Z
2023-10-27
2023-10-27T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/23993
urn:tid:203380924
url http://hdl.handle.net/10400.22/23993
identifier_str_mv urn:tid:203380924
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600656063070208