Diverse Intrusion-tolerant Systems

Bibliographic Details
Main Author: Henriques, Miguel Garcia Tavares
Publication Date: 2019
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10451/42283
Summary: Over the past 20 years, there have been indisputable advances on the development of Byzantine Fault-Tolerant (BFT) replicated systems. These systems keep operational safety as long as at most f out of n replicas fail simultaneously. Therefore, in order to maintain correctness it is assumed that replicas do not suffer from common mode failures, or in other words that replicas fail independently. In an adversarial setting, this requires that replicas do not include similar vulnerabilities, or otherwise a single exploit could be employed to compromise a significant part of the system. The thesis investigates how this assumption can be substantiated in practice by exploring diversity when managing the configurations of replicas. The thesis begins with an analysis of a large dataset of vulnerability information to get evidence that diversity can contribute to failure independence. In particular, we used the data from a vulnerability database to devise strategies for building groups of n replicas with different Operating Systems (OS). Our results demonstrate that it is possible to create dependable configurations of OSes, which do not share vulnerabilities over reasonable periods of time (i.e., a few years). Then, the thesis proposes a new design for a firewall-like service that protects and regulates the access to critical systems, and that could benefit from our diversity management approach. The solution provides fault and intrusion tolerance by implementing an architecture based on two filtering layers, enabling efficient removal of invalid messages at early stages in order to decrease the costs associated with BFT replication in the later stages. The thesis also presents a novel solution for managing diverse replicas. It collects and processes data from several data sources to continuously compute a risk metric. Once the risk increases, the solution replaces a potentially vulnerable replica by another one, trying to maximize the failure independence of the replicated service. Then, the replaced replica is put on quarantine and updated with the available patches, to be prepared for later re-use. We devised various experiments that show the dependability gains and performance impact of our prototype, including key benchmarks and three BFT applications (a key-value store, our firewall-like service, and a blockchain).
id RCAP_65d194289d15e59f0bceef1ba70978f6
oai_identifier_str oai:repositorio.ulisboa.pt:10451/42283
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Diverse Intrusion-tolerant SystemsDiversityVulnerabilitiesOperating SystemsIntrusion ToleranceRejuvenationsDiversidadeVulnerabilidadesSistemas OperativosTolerância a IntrusõesRejuvenescimentoDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoOver the past 20 years, there have been indisputable advances on the development of Byzantine Fault-Tolerant (BFT) replicated systems. These systems keep operational safety as long as at most f out of n replicas fail simultaneously. Therefore, in order to maintain correctness it is assumed that replicas do not suffer from common mode failures, or in other words that replicas fail independently. In an adversarial setting, this requires that replicas do not include similar vulnerabilities, or otherwise a single exploit could be employed to compromise a significant part of the system. The thesis investigates how this assumption can be substantiated in practice by exploring diversity when managing the configurations of replicas. The thesis begins with an analysis of a large dataset of vulnerability information to get evidence that diversity can contribute to failure independence. In particular, we used the data from a vulnerability database to devise strategies for building groups of n replicas with different Operating Systems (OS). Our results demonstrate that it is possible to create dependable configurations of OSes, which do not share vulnerabilities over reasonable periods of time (i.e., a few years). Then, the thesis proposes a new design for a firewall-like service that protects and regulates the access to critical systems, and that could benefit from our diversity management approach. The solution provides fault and intrusion tolerance by implementing an architecture based on two filtering layers, enabling efficient removal of invalid messages at early stages in order to decrease the costs associated with BFT replication in the later stages. The thesis also presents a novel solution for managing diverse replicas. It collects and processes data from several data sources to continuously compute a risk metric. Once the risk increases, the solution replaces a potentially vulnerable replica by another one, trying to maximize the failure independence of the replicated service. Then, the replaced replica is put on quarantine and updated with the available patches, to be prepared for later re-use. We devised various experiments that show the dependability gains and performance impact of our prototype, including key benchmarks and three BFT applications (a key-value store, our firewall-like service, and a blockchain).Unidade de investigação LASIGE (UID/CEC/00408/2019) e o projeto PTDC/EEI-SCR/1741/2041 (Abyss)Bessani, Alysson NevesNeves, Nuno Fuentecilla Maia FerreiraRepositório da Universidade de LisboaHenriques, Miguel Garcia Tavares2020-03-11T14:32:37Z2019-052019-05-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10451/42283TID:101473761enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T14:16:24Zoai:repositorio.ulisboa.pt:10451/42283Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:07:08.918305Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Diverse Intrusion-tolerant Systems
title Diverse Intrusion-tolerant Systems
spellingShingle Diverse Intrusion-tolerant Systems
Henriques, Miguel Garcia Tavares
Diversity
Vulnerabilities
Operating Systems
Intrusion Tolerance
Rejuvenations
Diversidade
Vulnerabilidades
Sistemas Operativos
Tolerância a Intrusões
Rejuvenescimento
Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação
title_short Diverse Intrusion-tolerant Systems
title_full Diverse Intrusion-tolerant Systems
title_fullStr Diverse Intrusion-tolerant Systems
title_full_unstemmed Diverse Intrusion-tolerant Systems
title_sort Diverse Intrusion-tolerant Systems
author Henriques, Miguel Garcia Tavares
author_facet Henriques, Miguel Garcia Tavares
author_role author
dc.contributor.none.fl_str_mv Bessani, Alysson Neves
Neves, Nuno Fuentecilla Maia Ferreira
Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Henriques, Miguel Garcia Tavares
dc.subject.por.fl_str_mv Diversity
Vulnerabilities
Operating Systems
Intrusion Tolerance
Rejuvenations
Diversidade
Vulnerabilidades
Sistemas Operativos
Tolerância a Intrusões
Rejuvenescimento
Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação
topic Diversity
Vulnerabilities
Operating Systems
Intrusion Tolerance
Rejuvenations
Diversidade
Vulnerabilidades
Sistemas Operativos
Tolerância a Intrusões
Rejuvenescimento
Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação
description Over the past 20 years, there have been indisputable advances on the development of Byzantine Fault-Tolerant (BFT) replicated systems. These systems keep operational safety as long as at most f out of n replicas fail simultaneously. Therefore, in order to maintain correctness it is assumed that replicas do not suffer from common mode failures, or in other words that replicas fail independently. In an adversarial setting, this requires that replicas do not include similar vulnerabilities, or otherwise a single exploit could be employed to compromise a significant part of the system. The thesis investigates how this assumption can be substantiated in practice by exploring diversity when managing the configurations of replicas. The thesis begins with an analysis of a large dataset of vulnerability information to get evidence that diversity can contribute to failure independence. In particular, we used the data from a vulnerability database to devise strategies for building groups of n replicas with different Operating Systems (OS). Our results demonstrate that it is possible to create dependable configurations of OSes, which do not share vulnerabilities over reasonable periods of time (i.e., a few years). Then, the thesis proposes a new design for a firewall-like service that protects and regulates the access to critical systems, and that could benefit from our diversity management approach. The solution provides fault and intrusion tolerance by implementing an architecture based on two filtering layers, enabling efficient removal of invalid messages at early stages in order to decrease the costs associated with BFT replication in the later stages. The thesis also presents a novel solution for managing diverse replicas. It collects and processes data from several data sources to continuously compute a risk metric. Once the risk increases, the solution replaces a potentially vulnerable replica by another one, trying to maximize the failure independence of the replicated service. Then, the replaced replica is put on quarantine and updated with the available patches, to be prepared for later re-use. We devised various experiments that show the dependability gains and performance impact of our prototype, including key benchmarks and three BFT applications (a key-value store, our firewall-like service, and a blockchain).
publishDate 2019
dc.date.none.fl_str_mv 2019-05
2019-05-01T00:00:00Z
2020-03-11T14:32:37Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/42283
TID:101473761
url http://hdl.handle.net/10451/42283
identifier_str_mv TID:101473761
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601601145667584