Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indices
Main Author: | |
---|---|
Publication Date: | 2008 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.1/2224 |
Summary: | In this paper, Artificial Neural Networks are applied for multi-step long term solar radiation prediction. The input-output structure of the neural network models is selected using evolutionary computation methods. The networks are trained as onestep- ahead predictors and iterated over time to obtain multi-step longer term predictions. Auto-regressive and auto-regressive with exogenous inputs models are compared, considering cloudiness indices as inputs in the latter case. These indices are obtained through pixel classification of ground-to-sky images, captured by a CCD camera. |
id |
RCAP_65c9dd8d18a23a80a50d5e4eadd08c57 |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/2224 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indicesCloudiness indicesSolar radiationNeural networksMulti-objective genetic algorithmsIn this paper, Artificial Neural Networks are applied for multi-step long term solar radiation prediction. The input-output structure of the neural network models is selected using evolutionary computation methods. The networks are trained as onestep- ahead predictors and iterated over time to obtain multi-step longer term predictions. Auto-regressive and auto-regressive with exogenous inputs models are compared, considering cloudiness indices as inputs in the latter case. These indices are obtained through pixel classification of ground-to-sky images, captured by a CCD camera.SapientiaRuano, AntonioCrispim, E. M.Ferreira, P. M.2013-02-05T15:00:04Z20082013-01-26T18:02:24Z2008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/2224eng1349-4198AUT: ARU00698;info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:48:35Zoai:sapientia.ualg.pt:10400.1/2224Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:36:54.230991Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indices |
title |
Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indices |
spellingShingle |
Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indices Ruano, Antonio Cloudiness indices Solar radiation Neural networks Multi-objective genetic algorithms |
title_short |
Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indices |
title_full |
Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indices |
title_fullStr |
Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indices |
title_full_unstemmed |
Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indices |
title_sort |
Prediction of the solar radiation evolution using computational intelligence techniques and cloudiness indices |
author |
Ruano, Antonio |
author_facet |
Ruano, Antonio Crispim, E. M. Ferreira, P. M. |
author_role |
author |
author2 |
Crispim, E. M. Ferreira, P. M. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Ruano, Antonio Crispim, E. M. Ferreira, P. M. |
dc.subject.por.fl_str_mv |
Cloudiness indices Solar radiation Neural networks Multi-objective genetic algorithms |
topic |
Cloudiness indices Solar radiation Neural networks Multi-objective genetic algorithms |
description |
In this paper, Artificial Neural Networks are applied for multi-step long term solar radiation prediction. The input-output structure of the neural network models is selected using evolutionary computation methods. The networks are trained as onestep- ahead predictors and iterated over time to obtain multi-step longer term predictions. Auto-regressive and auto-regressive with exogenous inputs models are compared, considering cloudiness indices as inputs in the latter case. These indices are obtained through pixel classification of ground-to-sky images, captured by a CCD camera. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008 2008-01-01T00:00:00Z 2013-02-05T15:00:04Z 2013-01-26T18:02:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/2224 |
url |
http://hdl.handle.net/10400.1/2224 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1349-4198 AUT: ARU00698; |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598745728516096 |