Maximum principles for some quasilinear elliptic systems
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10773/25838 |
Summary: | We give maximum principles for solutions u:Ω→ℝ N to a class of quasilinear elliptic systems whose prototype is [Formula presented]where α∈{1,…,N} is the equation index and Ω is an open, bounded subset of ℝ n . We assume that coefficients [Formula presented] are measurable with respect to x, continuous with respect to y∈ℝ N , bounded and elliptic. In vectorial problems, when trying to bound the solution by means of the boundary data, we need to bypass De Giorgi's counterexample by means of some additional structure assumptions on the coefficients [Formula presented]. In this paper, we assume that off-diagonal coefficients [Formula presented], α≠β, have support in some staircase set along the diagonal in the y α ,y β plane |
| id |
RCAP_6594c6b64d76a9531b408b2b5aa9e1af |
|---|---|
| oai_identifier_str |
oai:ria.ua.pt:10773/25838 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Maximum principles for some quasilinear elliptic systemsElliptic systemMaximum principler-staircase supportWe give maximum principles for solutions u:Ω→ℝ N to a class of quasilinear elliptic systems whose prototype is [Formula presented]where α∈{1,…,N} is the equation index and Ω is an open, bounded subset of ℝ n . We assume that coefficients [Formula presented] are measurable with respect to x, continuous with respect to y∈ℝ N , bounded and elliptic. In vectorial problems, when trying to bound the solution by means of the boundary data, we need to bypass De Giorgi's counterexample by means of some additional structure assumptions on the coefficients [Formula presented]. In this paper, we assume that off-diagonal coefficients [Formula presented], α≠β, have support in some staircase set along the diagonal in the y α ,y β planeElsevier2020-12-01T00:00:00Z2020-05-01T00:00:00Z2020-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25838eng0362-546X10.1016/j.na.2018.11.004Leonardi, SalvatoreLeonetti, FrancescoPignotti, CristinaRocha, EugénioStaicu, Vasileinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:19:59Zoai:ria.ua.pt:10773/25838Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:05:02.793503Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Maximum principles for some quasilinear elliptic systems |
| title |
Maximum principles for some quasilinear elliptic systems |
| spellingShingle |
Maximum principles for some quasilinear elliptic systems Leonardi, Salvatore Elliptic system Maximum principle r-staircase support |
| title_short |
Maximum principles for some quasilinear elliptic systems |
| title_full |
Maximum principles for some quasilinear elliptic systems |
| title_fullStr |
Maximum principles for some quasilinear elliptic systems |
| title_full_unstemmed |
Maximum principles for some quasilinear elliptic systems |
| title_sort |
Maximum principles for some quasilinear elliptic systems |
| author |
Leonardi, Salvatore |
| author_facet |
Leonardi, Salvatore Leonetti, Francesco Pignotti, Cristina Rocha, Eugénio Staicu, Vasile |
| author_role |
author |
| author2 |
Leonetti, Francesco Pignotti, Cristina Rocha, Eugénio Staicu, Vasile |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Leonardi, Salvatore Leonetti, Francesco Pignotti, Cristina Rocha, Eugénio Staicu, Vasile |
| dc.subject.por.fl_str_mv |
Elliptic system Maximum principle r-staircase support |
| topic |
Elliptic system Maximum principle r-staircase support |
| description |
We give maximum principles for solutions u:Ω→ℝ N to a class of quasilinear elliptic systems whose prototype is [Formula presented]where α∈{1,…,N} is the equation index and Ω is an open, bounded subset of ℝ n . We assume that coefficients [Formula presented] are measurable with respect to x, continuous with respect to y∈ℝ N , bounded and elliptic. In vectorial problems, when trying to bound the solution by means of the boundary data, we need to bypass De Giorgi's counterexample by means of some additional structure assumptions on the coefficients [Formula presented]. In this paper, we assume that off-diagonal coefficients [Formula presented], α≠β, have support in some staircase set along the diagonal in the y α ,y β plane |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-12-01T00:00:00Z 2020-05-01T00:00:00Z 2020-05 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/25838 |
| url |
http://hdl.handle.net/10773/25838 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0362-546X 10.1016/j.na.2018.11.004 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594274018492416 |