Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasets

Bibliographic Details
Main Author: Torres-Sospedra, Joaquín
Publication Date: 2021
Other Authors: Silva, Ivo Miguel Menezes, Klus, Lucie, Quezada-Gaibor, Darwin, Crivello, Antonino, Barsocchi, Paolo, Pendão, Cristiano, Lohan, Elena Simona, Nurmi, Jari, Moreira, Adriano
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/82120
Summary: The evaluation of Indoor Positioning Systems (IPSs) mostly relies on local deployments in the researchers' or partners' facilities. The complexity of preparing comprehensive experiments, collecting data, and considering multiple scenarios usually limits the evaluation area and, therefore, the assessment of the proposed systems. The requirements and features of controlled experiments cannot be generalized since the use of the same sensors or anchors density cannot be guaranteed. The dawn of datasets is pushing IPS evaluation to a similar level as machine-learning models, where new proposals are evaluated over many heterogeneous datasets. This paper proposes a way to evaluate IPSs in multiple scenarios, that is validated with three use cases. The results prove that the proposed aggregation of the evaluation metric values is a useful tool for high-level comparison of IPSs.
id RCAP_651ec2c1a2740a1ade5a0d3799d783cf
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/82120
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasetsEvaluationIndoor PositioningBenchmarkingIndoor Positioning BenchmarkingCiências Naturais::Ciências da Computação e da InformaçãoScience & TechnologyThe evaluation of Indoor Positioning Systems (IPSs) mostly relies on local deployments in the researchers' or partners' facilities. The complexity of preparing comprehensive experiments, collecting data, and considering multiple scenarios usually limits the evaluation area and, therefore, the assessment of the proposed systems. The requirements and features of controlled experiments cannot be generalized since the use of the same sensors or anchors density cannot be guaranteed. The dawn of datasets is pushing IPS evaluation to a similar level as machine-learning models, where new proposals are evaluated over many heterogeneous datasets. This paper proposes a way to evaluate IPSs in multiple scenarios, that is validated with three use cases. The results prove that the proposed aggregation of the evaluation metric values is a useful tool for high-level comparison of IPSs.The authors gratefully acknowledge funding from European Union's Horizon 2020 Research and Innovation programme under the Marie Sklodowska Curie grant agreement No. 813278 (A-WEAR: A network for dynamic wearable applications with privacy constraints, http://www.a-wear.eu/). FCT - Fundacao para a Ciencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020 and the PhD fellowship PD/BD/137401/2018. J. Torres-Sospedra acknowledges funding from MICIU (INSIGNIA, PTQ2018-009981)IEEEUniversidade do MinhoTorres-Sospedra, JoaquínSilva, Ivo Miguel MenezesKlus, LucieQuezada-Gaibor, DarwinCrivello, AntoninoBarsocchi, PaoloPendão, CristianoLohan, Elena SimonaNurmi, JariMoreira, Adriano20212021-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/82120engJ. Torres-Sospedra et al., "Towards Ubiquitous Indoor Positioning: Comparing Systems across Heterogeneous Datasets," 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 2021, pp. 1-8, doi: 10.1109/IPIN51156.2021.966256097816654040202162-734710.1109/IPIN51156.2021.9662560https://ieeexplore.ieee.org/document/9662560info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:34:10Zoai:repositorium.sdum.uminho.pt:1822/82120Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:22:38.186708Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasets
title Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasets
spellingShingle Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasets
Torres-Sospedra, Joaquín
Evaluation
Indoor Positioning
Benchmarking
Indoor Positioning Benchmarking
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
title_short Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasets
title_full Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasets
title_fullStr Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasets
title_full_unstemmed Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasets
title_sort Towards ubiquitous indoor positioning: comparing systems across heterogeneous datasets
author Torres-Sospedra, Joaquín
author_facet Torres-Sospedra, Joaquín
Silva, Ivo Miguel Menezes
Klus, Lucie
Quezada-Gaibor, Darwin
Crivello, Antonino
Barsocchi, Paolo
Pendão, Cristiano
Lohan, Elena Simona
Nurmi, Jari
Moreira, Adriano
author_role author
author2 Silva, Ivo Miguel Menezes
Klus, Lucie
Quezada-Gaibor, Darwin
Crivello, Antonino
Barsocchi, Paolo
Pendão, Cristiano
Lohan, Elena Simona
Nurmi, Jari
Moreira, Adriano
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Torres-Sospedra, Joaquín
Silva, Ivo Miguel Menezes
Klus, Lucie
Quezada-Gaibor, Darwin
Crivello, Antonino
Barsocchi, Paolo
Pendão, Cristiano
Lohan, Elena Simona
Nurmi, Jari
Moreira, Adriano
dc.subject.por.fl_str_mv Evaluation
Indoor Positioning
Benchmarking
Indoor Positioning Benchmarking
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
topic Evaluation
Indoor Positioning
Benchmarking
Indoor Positioning Benchmarking
Ciências Naturais::Ciências da Computação e da Informação
Science & Technology
description The evaluation of Indoor Positioning Systems (IPSs) mostly relies on local deployments in the researchers' or partners' facilities. The complexity of preparing comprehensive experiments, collecting data, and considering multiple scenarios usually limits the evaluation area and, therefore, the assessment of the proposed systems. The requirements and features of controlled experiments cannot be generalized since the use of the same sensors or anchors density cannot be guaranteed. The dawn of datasets is pushing IPS evaluation to a similar level as machine-learning models, where new proposals are evaluated over many heterogeneous datasets. This paper proposes a way to evaluate IPSs in multiple scenarios, that is validated with three use cases. The results prove that the proposed aggregation of the evaluation metric values is a useful tool for high-level comparison of IPSs.
publishDate 2021
dc.date.none.fl_str_mv 2021
2021-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/82120
url https://hdl.handle.net/1822/82120
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv J. Torres-Sospedra et al., "Towards Ubiquitous Indoor Positioning: Comparing Systems across Heterogeneous Datasets," 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Lloret de Mar, Spain, 2021, pp. 1-8, doi: 10.1109/IPIN51156.2021.9662560
9781665404020
2162-7347
10.1109/IPIN51156.2021.9662560
https://ieeexplore.ieee.org/document/9662560
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595277292863488