uORF-mediated translational regulation of PERK : implications for cell homeostasis and human disease

Bibliographic Details
Main Author: Fernandes, Rafael
Publication Date: 2020
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10451/48530
Summary: Upstream open reading frames (uORFs) are cis-acting elements located within the 5’ leader sequence (or 5’ untranslated region; 5’UTR) of transcripts that can regulate translation of the correspondent main open reading frame (mORF). During basal conditions, uORFs are typically considered to be repressors of downstream translation, as they can impede the ribosomes to access the mORF or even induce mRNA degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, during stress conditions, phosphorylation of the eukaryotic initiation factor 2α (eIF2α) allows the expression of several stress-responsive proteins through uORF-mediated mechanisms, while global mRNA translation is inhibited. During endoplasmic reticulum (ER) stress, for instance, the accumulation of unfolded proteins leads to activation of the ER-resident PKR-like ER kinase (PERK) that phosphorylates eIF2α as part of the stress-protective mechanisms of the unfolded protein response (UPR) and the integrated stress response (ISR). This results in the selective uORF-mediated translation of downstream effectors, like the activating transcription factor 4 (ATF4), the CCAAT-enhancer-binding protein homologous protein (CHOP) and the growth arrest and DNA damage-inducible protein 34 (GADD34), which drive stress resolution or, in the case of a prolonged stress, cell death. The dual role of PERK in regulating cell fate has been reported to be involved in the outcome of several human diseases, including diabetes, neurodegenerative disorders and cancer. Moreover, mutations in the EIF2AK3 gene that encodes PERK have been implicated in the development of the rare genetic disease, Wolcott-Rallison Syndrome (WRS). Interestingly, data from ribosome-profiling (Ribo-seq) studies suggested the existence of uORFs within PERK 5’UTR, which could be involved in the regulation of PERK expression. In this work, we aimed to study the translational regulatory role of five AUG- and three non-AUG-uORFs identified in the PERK 5’UTR and assess its impact in cell homeostasis and human disease. While uORF2 and the non-AUG-uORFs 5, 6 and 7 do not seem to have a significant regulatory role, uORF1, uORF3, uORF4 and uORF8 together present a strong repressive effect over mORF translation in basal conditions, possibly by providing a barrier to the scanning ribosomes and precluding translation reinitiation at the mORF, without affecting the PERK mRNA levels. Curiously, we found that when we induce PERK overexpression, it leads to the spontaneous activation of a portion of PERK in the absence of any stress stimulus, possibly highlighting the biological relevance of its uORF-mediated translational regulation in maintaining its physiological basal levels. Conversely, during stress conditions, increased bypass of uORF1 results in a modest degree of translational de-repression, which may help to counterbalance the increased rate of PERK protein turnover observed in these conditions. We also found that alteration of the PERK uORFs by mutations found in WRS patients modify PERK expression, providing a possible link with the disease phenotype. Finally, we tested the impact of PERK unbalanced expression in the viability of HCT116 cells but, at least in our experimental conditions, no differences were found. Altogether, we provide a new example of a transcript containing uORFs that fine-tune mORF translation. Moreover, we highlight the importance of including 5’UTRs, like the one of PERK, in the screening of disease-related mutations and the necessity of functional studies to assess their relevance in the pathogenesis of human diseases. This may provide vital information for the development of new therapeutic strategies.
id RCAP_62e5159b5d8509e804ddbe85fece758f
oai_identifier_str oai:repositorio.ulisboa.pt:10451/48530
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling uORF-mediated translational regulation of PERK : implications for cell homeostasis and human diseaseAUG-upstream open reading frame (AUG-uORF)non-AUG-upstream open reading frame (non-AUG-uORF)endoplasmic reticulum (ER) stressunfolded protein responseintegrated stress responseWolcott-Rallison SyndromeDomínio/Área Científica::Ciências Naturais::Ciências BiológicasUpstream open reading frames (uORFs) are cis-acting elements located within the 5’ leader sequence (or 5’ untranslated region; 5’UTR) of transcripts that can regulate translation of the correspondent main open reading frame (mORF). During basal conditions, uORFs are typically considered to be repressors of downstream translation, as they can impede the ribosomes to access the mORF or even induce mRNA degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, during stress conditions, phosphorylation of the eukaryotic initiation factor 2α (eIF2α) allows the expression of several stress-responsive proteins through uORF-mediated mechanisms, while global mRNA translation is inhibited. During endoplasmic reticulum (ER) stress, for instance, the accumulation of unfolded proteins leads to activation of the ER-resident PKR-like ER kinase (PERK) that phosphorylates eIF2α as part of the stress-protective mechanisms of the unfolded protein response (UPR) and the integrated stress response (ISR). This results in the selective uORF-mediated translation of downstream effectors, like the activating transcription factor 4 (ATF4), the CCAAT-enhancer-binding protein homologous protein (CHOP) and the growth arrest and DNA damage-inducible protein 34 (GADD34), which drive stress resolution or, in the case of a prolonged stress, cell death. The dual role of PERK in regulating cell fate has been reported to be involved in the outcome of several human diseases, including diabetes, neurodegenerative disorders and cancer. Moreover, mutations in the EIF2AK3 gene that encodes PERK have been implicated in the development of the rare genetic disease, Wolcott-Rallison Syndrome (WRS). Interestingly, data from ribosome-profiling (Ribo-seq) studies suggested the existence of uORFs within PERK 5’UTR, which could be involved in the regulation of PERK expression. In this work, we aimed to study the translational regulatory role of five AUG- and three non-AUG-uORFs identified in the PERK 5’UTR and assess its impact in cell homeostasis and human disease. While uORF2 and the non-AUG-uORFs 5, 6 and 7 do not seem to have a significant regulatory role, uORF1, uORF3, uORF4 and uORF8 together present a strong repressive effect over mORF translation in basal conditions, possibly by providing a barrier to the scanning ribosomes and precluding translation reinitiation at the mORF, without affecting the PERK mRNA levels. Curiously, we found that when we induce PERK overexpression, it leads to the spontaneous activation of a portion of PERK in the absence of any stress stimulus, possibly highlighting the biological relevance of its uORF-mediated translational regulation in maintaining its physiological basal levels. Conversely, during stress conditions, increased bypass of uORF1 results in a modest degree of translational de-repression, which may help to counterbalance the increased rate of PERK protein turnover observed in these conditions. We also found that alteration of the PERK uORFs by mutations found in WRS patients modify PERK expression, providing a possible link with the disease phenotype. Finally, we tested the impact of PERK unbalanced expression in the viability of HCT116 cells but, at least in our experimental conditions, no differences were found. Altogether, we provide a new example of a transcript containing uORFs that fine-tune mORF translation. Moreover, we highlight the importance of including 5’UTRs, like the one of PERK, in the screening of disease-related mutations and the necessity of functional studies to assess their relevance in the pathogenesis of human diseases. This may provide vital information for the development of new therapeutic strategies.Romão, LuísaBourbon, MafaldaRepositório da Universidade de LisboaFernandes, Rafael2024-12-01T01:30:36Z2020-112020-052020-11-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10451/48530TID:101579616enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-17T14:32:51Zoai:repositorio.ulisboa.pt:10451/48530Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T03:15:07.469794Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv uORF-mediated translational regulation of PERK : implications for cell homeostasis and human disease
title uORF-mediated translational regulation of PERK : implications for cell homeostasis and human disease
spellingShingle uORF-mediated translational regulation of PERK : implications for cell homeostasis and human disease
Fernandes, Rafael
AUG-upstream open reading frame (AUG-uORF)
non-AUG-upstream open reading frame (non-AUG-uORF)
endoplasmic reticulum (ER) stress
unfolded protein response
integrated stress response
Wolcott-Rallison Syndrome
Domínio/Área Científica::Ciências Naturais::Ciências Biológicas
title_short uORF-mediated translational regulation of PERK : implications for cell homeostasis and human disease
title_full uORF-mediated translational regulation of PERK : implications for cell homeostasis and human disease
title_fullStr uORF-mediated translational regulation of PERK : implications for cell homeostasis and human disease
title_full_unstemmed uORF-mediated translational regulation of PERK : implications for cell homeostasis and human disease
title_sort uORF-mediated translational regulation of PERK : implications for cell homeostasis and human disease
author Fernandes, Rafael
author_facet Fernandes, Rafael
author_role author
dc.contributor.none.fl_str_mv Romão, Luísa
Bourbon, Mafalda
Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Fernandes, Rafael
dc.subject.por.fl_str_mv AUG-upstream open reading frame (AUG-uORF)
non-AUG-upstream open reading frame (non-AUG-uORF)
endoplasmic reticulum (ER) stress
unfolded protein response
integrated stress response
Wolcott-Rallison Syndrome
Domínio/Área Científica::Ciências Naturais::Ciências Biológicas
topic AUG-upstream open reading frame (AUG-uORF)
non-AUG-upstream open reading frame (non-AUG-uORF)
endoplasmic reticulum (ER) stress
unfolded protein response
integrated stress response
Wolcott-Rallison Syndrome
Domínio/Área Científica::Ciências Naturais::Ciências Biológicas
description Upstream open reading frames (uORFs) are cis-acting elements located within the 5’ leader sequence (or 5’ untranslated region; 5’UTR) of transcripts that can regulate translation of the correspondent main open reading frame (mORF). During basal conditions, uORFs are typically considered to be repressors of downstream translation, as they can impede the ribosomes to access the mORF or even induce mRNA degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, during stress conditions, phosphorylation of the eukaryotic initiation factor 2α (eIF2α) allows the expression of several stress-responsive proteins through uORF-mediated mechanisms, while global mRNA translation is inhibited. During endoplasmic reticulum (ER) stress, for instance, the accumulation of unfolded proteins leads to activation of the ER-resident PKR-like ER kinase (PERK) that phosphorylates eIF2α as part of the stress-protective mechanisms of the unfolded protein response (UPR) and the integrated stress response (ISR). This results in the selective uORF-mediated translation of downstream effectors, like the activating transcription factor 4 (ATF4), the CCAAT-enhancer-binding protein homologous protein (CHOP) and the growth arrest and DNA damage-inducible protein 34 (GADD34), which drive stress resolution or, in the case of a prolonged stress, cell death. The dual role of PERK in regulating cell fate has been reported to be involved in the outcome of several human diseases, including diabetes, neurodegenerative disorders and cancer. Moreover, mutations in the EIF2AK3 gene that encodes PERK have been implicated in the development of the rare genetic disease, Wolcott-Rallison Syndrome (WRS). Interestingly, data from ribosome-profiling (Ribo-seq) studies suggested the existence of uORFs within PERK 5’UTR, which could be involved in the regulation of PERK expression. In this work, we aimed to study the translational regulatory role of five AUG- and three non-AUG-uORFs identified in the PERK 5’UTR and assess its impact in cell homeostasis and human disease. While uORF2 and the non-AUG-uORFs 5, 6 and 7 do not seem to have a significant regulatory role, uORF1, uORF3, uORF4 and uORF8 together present a strong repressive effect over mORF translation in basal conditions, possibly by providing a barrier to the scanning ribosomes and precluding translation reinitiation at the mORF, without affecting the PERK mRNA levels. Curiously, we found that when we induce PERK overexpression, it leads to the spontaneous activation of a portion of PERK in the absence of any stress stimulus, possibly highlighting the biological relevance of its uORF-mediated translational regulation in maintaining its physiological basal levels. Conversely, during stress conditions, increased bypass of uORF1 results in a modest degree of translational de-repression, which may help to counterbalance the increased rate of PERK protein turnover observed in these conditions. We also found that alteration of the PERK uORFs by mutations found in WRS patients modify PERK expression, providing a possible link with the disease phenotype. Finally, we tested the impact of PERK unbalanced expression in the viability of HCT116 cells but, at least in our experimental conditions, no differences were found. Altogether, we provide a new example of a transcript containing uORFs that fine-tune mORF translation. Moreover, we highlight the importance of including 5’UTRs, like the one of PERK, in the screening of disease-related mutations and the necessity of functional studies to assess their relevance in the pathogenesis of human diseases. This may provide vital information for the development of new therapeutic strategies.
publishDate 2020
dc.date.none.fl_str_mv 2020-11
2020-05
2020-11-01T00:00:00Z
2024-12-01T01:30:36Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10451/48530
TID:101579616
url http://hdl.handle.net/10451/48530
identifier_str_mv TID:101579616
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601639605338112