Metaheuristhic approach to the Holt-Winters optimal short term load forecast
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2015 |
| Outros Autores: | , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10400.21/4540 |
Resumo: | Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement. |
| id |
RCAP_62de38c8e4235a61a44cb2df8df4fa99 |
|---|---|
| oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/4540 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Metaheuristhic approach to the Holt-Winters optimal short term load forecastElectricity demandLoad forecastCombinatorial optimizationEvolutionary algorithmsElectricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement.RCIPLEusébio, EduardoCamus, Cristina InêsCurvelo, Carolina2015-05-14T11:12:50Z2015-032015-03-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionhttp://hdl.handle.net/10400.21/4540engmetadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T08:09:47Zoai:repositorio.ipl.pt:10400.21/4540Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:54:03.756185Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Metaheuristhic approach to the Holt-Winters optimal short term load forecast |
| title |
Metaheuristhic approach to the Holt-Winters optimal short term load forecast |
| spellingShingle |
Metaheuristhic approach to the Holt-Winters optimal short term load forecast Eusébio, Eduardo Electricity demand Load forecast Combinatorial optimization Evolutionary algorithms |
| title_short |
Metaheuristhic approach to the Holt-Winters optimal short term load forecast |
| title_full |
Metaheuristhic approach to the Holt-Winters optimal short term load forecast |
| title_fullStr |
Metaheuristhic approach to the Holt-Winters optimal short term load forecast |
| title_full_unstemmed |
Metaheuristhic approach to the Holt-Winters optimal short term load forecast |
| title_sort |
Metaheuristhic approach to the Holt-Winters optimal short term load forecast |
| author |
Eusébio, Eduardo |
| author_facet |
Eusébio, Eduardo Camus, Cristina Inês Curvelo, Carolina |
| author_role |
author |
| author2 |
Camus, Cristina Inês Curvelo, Carolina |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
RCIPL |
| dc.contributor.author.fl_str_mv |
Eusébio, Eduardo Camus, Cristina Inês Curvelo, Carolina |
| dc.subject.por.fl_str_mv |
Electricity demand Load forecast Combinatorial optimization Evolutionary algorithms |
| topic |
Electricity demand Load forecast Combinatorial optimization Evolutionary algorithms |
| description |
Electricity short-term load forecast is very important for the operation of power systems. In this work a classical exponential smoothing model, the Holt-Winters with double seasonality was used to test for accurate predictions applied to the Portuguese demand time series. Some metaheuristic algorithms for the optimal selection of the smoothing parameters of the Holt-Winters forecast function were used and the results after testing in the time series showed little differences among methods, so the use of the simple local search algorithms is recommended as they are easier to implement. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-05-14T11:12:50Z 2015-03 2015-03-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/4540 |
| url |
http://hdl.handle.net/10400.21/4540 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
metadata only access |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598384536027136 |