Face-based Photo Indexing in Edge Computing Environments

Bibliographic Details
Main Author: Pregal, Filipe Lourenço Lopes
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/177214
Summary: Over recent years, smart mobile devices have grown in popularity. With such popularity growth, data traffic has also increased, which gave rise to new problems such as higher latency in data requests or less data storage capability. A paradigm that promises to nullify many of the issues with this growth is Edge Computing. A computing paradigm composed by the user devices, edge servers and the cloud. Edge Servers, located at the edge of the internet, close to the user’s devices, help processing and disseminating information and data. During this dissertation, we propose to enhance Chives, a machine learning API to identify faces in photos, in this environment, creating a cluster indexing system, in order to enable the development of a photo sharing application with lower latency in picture search through facial recognition. Such index is created using Conflict-free Replicated Data Types. On a mobile phone, the user will be able to search for photos with faces, using a photo of a similar face as an input. Our solution proved to retrieve the correct results, while being almost as fast as the human eye perception’s capability, being a good addition to the EdgeGarden environ- ment.
id RCAP_62b7eae9331f4447d8406b43fae68e62
oai_identifier_str oai:run.unl.pt:10362/177214
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Face-based Photo Indexing in Edge Computing EnvironmentsConflict-Free Replicated Data TypeEdge ComputingIndexing at the EdgeMachine LearningPublish/SubscribeDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaOver recent years, smart mobile devices have grown in popularity. With such popularity growth, data traffic has also increased, which gave rise to new problems such as higher latency in data requests or less data storage capability. A paradigm that promises to nullify many of the issues with this growth is Edge Computing. A computing paradigm composed by the user devices, edge servers and the cloud. Edge Servers, located at the edge of the internet, close to the user’s devices, help processing and disseminating information and data. During this dissertation, we propose to enhance Chives, a machine learning API to identify faces in photos, in this environment, creating a cluster indexing system, in order to enable the development of a photo sharing application with lower latency in picture search through facial recognition. Such index is created using Conflict-free Replicated Data Types. On a mobile phone, the user will be able to search for photos with faces, using a photo of a similar face as an input. Our solution proved to retrieve the correct results, while being almost as fast as the human eye perception’s capability, being a good addition to the EdgeGarden environ- ment.Ao longo dos últimos anos, os dispositivos móveis inteligentes têm crescido em popu- laridade. Com esta evolução de popularidade, o tráfego de dados também aumentou, o que provocou um despertar de novos problemas como elevadas latências em pedidos de dados ou menor capacidade de armazenamento de dados. Um paradigma que promete anular muitos dos problemas associados a este crescimento é a Computação na Edge. Um paradigma computacional composto por dispositivos dos utilizadores, servidores na Edge e a Cloud. Os servidores na Edge, localizados nas periferias da Internet, perto dos dispositivos dos utilizadores, vêm ajudar a processar e distribuir informação e dados. Durante esta dissertação, propomos melhorar o Chives, uma API de aprendizagem automática para identificar caras em fotos, neste ambiente, criando um sistema de in- dexação de clusters, para permitir o desenvolvimento de uma aplicação de partilha de fotos com baixa latência na procura de imagens por reconhecimento facial. Este índice é criado utilizando Conflict-free Replicated Data Types. No telemóvel, o utilizador poderá procurar fotos com caras, utilizando uma foto semelhante como input. A nossa solução provou obter resultados corretos, enquanto se mantém quase tão rá- pida como a capacidade de perceção do olho humano, sendo uma boa adição ao ambiente do EdgeGarden.Paulino, HervéRUNPregal, Filipe Lourenço Lopes2025-01-09T16:47:08Z2024-062024-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/177214enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:44:37Zoai:run.unl.pt:10362/177214Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:39:06.928187Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Face-based Photo Indexing in Edge Computing Environments
title Face-based Photo Indexing in Edge Computing Environments
spellingShingle Face-based Photo Indexing in Edge Computing Environments
Pregal, Filipe Lourenço Lopes
Conflict-Free Replicated Data Type
Edge Computing
Indexing at the Edge
Machine Learning
Publish/Subscribe
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short Face-based Photo Indexing in Edge Computing Environments
title_full Face-based Photo Indexing in Edge Computing Environments
title_fullStr Face-based Photo Indexing in Edge Computing Environments
title_full_unstemmed Face-based Photo Indexing in Edge Computing Environments
title_sort Face-based Photo Indexing in Edge Computing Environments
author Pregal, Filipe Lourenço Lopes
author_facet Pregal, Filipe Lourenço Lopes
author_role author
dc.contributor.none.fl_str_mv Paulino, Hervé
RUN
dc.contributor.author.fl_str_mv Pregal, Filipe Lourenço Lopes
dc.subject.por.fl_str_mv Conflict-Free Replicated Data Type
Edge Computing
Indexing at the Edge
Machine Learning
Publish/Subscribe
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Conflict-Free Replicated Data Type
Edge Computing
Indexing at the Edge
Machine Learning
Publish/Subscribe
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description Over recent years, smart mobile devices have grown in popularity. With such popularity growth, data traffic has also increased, which gave rise to new problems such as higher latency in data requests or less data storage capability. A paradigm that promises to nullify many of the issues with this growth is Edge Computing. A computing paradigm composed by the user devices, edge servers and the cloud. Edge Servers, located at the edge of the internet, close to the user’s devices, help processing and disseminating information and data. During this dissertation, we propose to enhance Chives, a machine learning API to identify faces in photos, in this environment, creating a cluster indexing system, in order to enable the development of a photo sharing application with lower latency in picture search through facial recognition. Such index is created using Conflict-free Replicated Data Types. On a mobile phone, the user will be able to search for photos with faces, using a photo of a similar face as an input. Our solution proved to retrieve the correct results, while being almost as fast as the human eye perception’s capability, being a good addition to the EdgeGarden environ- ment.
publishDate 2024
dc.date.none.fl_str_mv 2024-06
2024-06-01T00:00:00Z
2025-01-09T16:47:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/177214
url http://hdl.handle.net/10362/177214
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598232926617600