Face-based Photo Indexing in Edge Computing Environments
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10362/177214 |
Summary: | Over recent years, smart mobile devices have grown in popularity. With such popularity growth, data traffic has also increased, which gave rise to new problems such as higher latency in data requests or less data storage capability. A paradigm that promises to nullify many of the issues with this growth is Edge Computing. A computing paradigm composed by the user devices, edge servers and the cloud. Edge Servers, located at the edge of the internet, close to the user’s devices, help processing and disseminating information and data. During this dissertation, we propose to enhance Chives, a machine learning API to identify faces in photos, in this environment, creating a cluster indexing system, in order to enable the development of a photo sharing application with lower latency in picture search through facial recognition. Such index is created using Conflict-free Replicated Data Types. On a mobile phone, the user will be able to search for photos with faces, using a photo of a similar face as an input. Our solution proved to retrieve the correct results, while being almost as fast as the human eye perception’s capability, being a good addition to the EdgeGarden environ- ment. |
| id |
RCAP_62b7eae9331f4447d8406b43fae68e62 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/177214 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Face-based Photo Indexing in Edge Computing EnvironmentsConflict-Free Replicated Data TypeEdge ComputingIndexing at the EdgeMachine LearningPublish/SubscribeDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaOver recent years, smart mobile devices have grown in popularity. With such popularity growth, data traffic has also increased, which gave rise to new problems such as higher latency in data requests or less data storage capability. A paradigm that promises to nullify many of the issues with this growth is Edge Computing. A computing paradigm composed by the user devices, edge servers and the cloud. Edge Servers, located at the edge of the internet, close to the user’s devices, help processing and disseminating information and data. During this dissertation, we propose to enhance Chives, a machine learning API to identify faces in photos, in this environment, creating a cluster indexing system, in order to enable the development of a photo sharing application with lower latency in picture search through facial recognition. Such index is created using Conflict-free Replicated Data Types. On a mobile phone, the user will be able to search for photos with faces, using a photo of a similar face as an input. Our solution proved to retrieve the correct results, while being almost as fast as the human eye perception’s capability, being a good addition to the EdgeGarden environ- ment.Ao longo dos últimos anos, os dispositivos móveis inteligentes têm crescido em popu- laridade. Com esta evolução de popularidade, o tráfego de dados também aumentou, o que provocou um despertar de novos problemas como elevadas latências em pedidos de dados ou menor capacidade de armazenamento de dados. Um paradigma que promete anular muitos dos problemas associados a este crescimento é a Computação na Edge. Um paradigma computacional composto por dispositivos dos utilizadores, servidores na Edge e a Cloud. Os servidores na Edge, localizados nas periferias da Internet, perto dos dispositivos dos utilizadores, vêm ajudar a processar e distribuir informação e dados. Durante esta dissertação, propomos melhorar o Chives, uma API de aprendizagem automática para identificar caras em fotos, neste ambiente, criando um sistema de in- dexação de clusters, para permitir o desenvolvimento de uma aplicação de partilha de fotos com baixa latência na procura de imagens por reconhecimento facial. Este índice é criado utilizando Conflict-free Replicated Data Types. No telemóvel, o utilizador poderá procurar fotos com caras, utilizando uma foto semelhante como input. A nossa solução provou obter resultados corretos, enquanto se mantém quase tão rá- pida como a capacidade de perceção do olho humano, sendo uma boa adição ao ambiente do EdgeGarden.Paulino, HervéRUNPregal, Filipe Lourenço Lopes2025-01-09T16:47:08Z2024-062024-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/177214enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:44:37Zoai:run.unl.pt:10362/177214Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:39:06.928187Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Face-based Photo Indexing in Edge Computing Environments |
| title |
Face-based Photo Indexing in Edge Computing Environments |
| spellingShingle |
Face-based Photo Indexing in Edge Computing Environments Pregal, Filipe Lourenço Lopes Conflict-Free Replicated Data Type Edge Computing Indexing at the Edge Machine Learning Publish/Subscribe Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| title_short |
Face-based Photo Indexing in Edge Computing Environments |
| title_full |
Face-based Photo Indexing in Edge Computing Environments |
| title_fullStr |
Face-based Photo Indexing in Edge Computing Environments |
| title_full_unstemmed |
Face-based Photo Indexing in Edge Computing Environments |
| title_sort |
Face-based Photo Indexing in Edge Computing Environments |
| author |
Pregal, Filipe Lourenço Lopes |
| author_facet |
Pregal, Filipe Lourenço Lopes |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Paulino, Hervé RUN |
| dc.contributor.author.fl_str_mv |
Pregal, Filipe Lourenço Lopes |
| dc.subject.por.fl_str_mv |
Conflict-Free Replicated Data Type Edge Computing Indexing at the Edge Machine Learning Publish/Subscribe Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| topic |
Conflict-Free Replicated Data Type Edge Computing Indexing at the Edge Machine Learning Publish/Subscribe Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
| description |
Over recent years, smart mobile devices have grown in popularity. With such popularity growth, data traffic has also increased, which gave rise to new problems such as higher latency in data requests or less data storage capability. A paradigm that promises to nullify many of the issues with this growth is Edge Computing. A computing paradigm composed by the user devices, edge servers and the cloud. Edge Servers, located at the edge of the internet, close to the user’s devices, help processing and disseminating information and data. During this dissertation, we propose to enhance Chives, a machine learning API to identify faces in photos, in this environment, creating a cluster indexing system, in order to enable the development of a photo sharing application with lower latency in picture search through facial recognition. Such index is created using Conflict-free Replicated Data Types. On a mobile phone, the user will be able to search for photos with faces, using a photo of a similar face as an input. Our solution proved to retrieve the correct results, while being almost as fast as the human eye perception’s capability, being a good addition to the EdgeGarden environ- ment. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-06 2024-06-01T00:00:00Z 2025-01-09T16:47:08Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/177214 |
| url |
http://hdl.handle.net/10362/177214 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598232926617600 |