A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
Main Author: | |
---|---|
Publication Date: | 2011 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.21/523 |
Summary: | The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches. |
id |
RCAP_62b3304fb846cb32ac2e49e3f7cc2330 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/523 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A hybrid PSO-ANFIS approach for short-term wind power prediction in PortugalWind powerPredictionSwarm optimizationNeuro-fuzzyThe increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.PERGAMON-ELSEVIER SCIENCE LTDRCIPLPousinho, Hugo Miguel InácioMendes, VictorCatalão, João Paulo da Silva2011-11-24T11:34:00Z2011-012011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfapplication/pdfhttp://hdl.handle.net/10400.21/523eng0196-8904info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-12T11:03:14Zoai:repositorio.ipl.pt:10400.21/523Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:10:01.445564Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal |
title |
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal |
spellingShingle |
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal Pousinho, Hugo Miguel Inácio Wind power Prediction Swarm optimization Neuro-fuzzy |
title_short |
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal |
title_full |
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal |
title_fullStr |
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal |
title_full_unstemmed |
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal |
title_sort |
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal |
author |
Pousinho, Hugo Miguel Inácio |
author_facet |
Pousinho, Hugo Miguel Inácio Mendes, Victor Catalão, João Paulo da Silva |
author_role |
author |
author2 |
Mendes, Victor Catalão, João Paulo da Silva |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Pousinho, Hugo Miguel Inácio Mendes, Victor Catalão, João Paulo da Silva |
dc.subject.por.fl_str_mv |
Wind power Prediction Swarm optimization Neuro-fuzzy |
topic |
Wind power Prediction Swarm optimization Neuro-fuzzy |
description |
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-11-24T11:34:00Z 2011-01 2011-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/523 |
url |
http://hdl.handle.net/10400.21/523 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0196-8904 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
PERGAMON-ELSEVIER SCIENCE LTD |
publisher.none.fl_str_mv |
PERGAMON-ELSEVIER SCIENCE LTD |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598522521288704 |