Enhancing portfolio optimization with machine learning methods
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/175690 |
Summary: | Raimundo, B., & Bravo, J. M. (2024). Enhancing portfolio optimization with machine learning methods: A comparative study using commodity markets data. In MCIS 2024 Proceedings Article 39 AISEL. https://aisel.aisnet.org/mcis2024/39/ --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project UIDB/04152/2020 (DOI: 10.54499/UIDB/04152/2020) - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. |
id |
RCAP_626f357bf62e28f1edecbea7d21a45e6 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/175690 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Enhancing portfolio optimization with machine learning methodsA comparative study using commodity markets dataSDG 8 - Decent Work and Economic GrowthRaimundo, B., & Bravo, J. M. (2024). Enhancing portfolio optimization with machine learning methods: A comparative study using commodity markets data. In MCIS 2024 Proceedings Article 39 AISEL. https://aisel.aisnet.org/mcis2024/39/ --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project UIDB/04152/2020 (DOI: 10.54499/UIDB/04152/2020) - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.Portfolio optimization is the process of selecting an optimal portfolio of assets according to some objective, investor preferences, and constraints, typically optimizing the trade-off between risk and return. This study evaluates the effectiveness of traditional and novel machine learning portfolio optimization techniques by incorporating short selling, a design feature often overlooked in previous research. We employ historical commodity market data from seven commodity groups. The strategies investigated include Mean-Variance Optimization, Global Minimum Variance, Equal Weights, Maximum Diversification, Risk Parity, and Hierarchical Risk Parity. The findings suggest that allowing for short selling impacts the performance portfolio optimization strategies. Mean-Variance Optimization potentially increases returns but at the cost of greater volatility. Global Minimum Variance consistently exhibits stability and minimal risk, ideal for portfolio managers who adopt conservative investment strategies. Maximum Diversifying Portfolio and Risk Parity show moderate but resilient performance, and Hierarchical Risk Parity, despite its innovation, tends to be more volatile. Surprisingly, the Equal Weighted strategy holds its ground against more complex approaches, providing a viable option for those who value simplicity. This analysis highlights the importance of matching portfolio strategies with investor risk preferences, especially when integrating techniques like short selling.AISELInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNRaimundo, BernardoBravo, Jorge Miguel2024-11-22T22:21:41Z2024-10-032024-10-03T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion16application/pdfhttp://hdl.handle.net/10362/175690eng978-989-33-6886-2PURE: 102558742info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-12-02T01:35:44Zoai:run.unl.pt:10362/175690Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:15:59.488916Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Enhancing portfolio optimization with machine learning methods A comparative study using commodity markets data |
title |
Enhancing portfolio optimization with machine learning methods |
spellingShingle |
Enhancing portfolio optimization with machine learning methods Raimundo, Bernardo SDG 8 - Decent Work and Economic Growth |
title_short |
Enhancing portfolio optimization with machine learning methods |
title_full |
Enhancing portfolio optimization with machine learning methods |
title_fullStr |
Enhancing portfolio optimization with machine learning methods |
title_full_unstemmed |
Enhancing portfolio optimization with machine learning methods |
title_sort |
Enhancing portfolio optimization with machine learning methods |
author |
Raimundo, Bernardo |
author_facet |
Raimundo, Bernardo Bravo, Jorge Miguel |
author_role |
author |
author2 |
Bravo, Jorge Miguel |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
dc.contributor.author.fl_str_mv |
Raimundo, Bernardo Bravo, Jorge Miguel |
dc.subject.por.fl_str_mv |
SDG 8 - Decent Work and Economic Growth |
topic |
SDG 8 - Decent Work and Economic Growth |
description |
Raimundo, B., & Bravo, J. M. (2024). Enhancing portfolio optimization with machine learning methods: A comparative study using commodity markets data. In MCIS 2024 Proceedings Article 39 AISEL. https://aisel.aisnet.org/mcis2024/39/ --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project UIDB/04152/2020 (DOI: 10.54499/UIDB/04152/2020) - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11-22T22:21:41Z 2024-10-03 2024-10-03T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/175690 |
url |
http://hdl.handle.net/10362/175690 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-989-33-6886-2 PURE: 102558742 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
16 application/pdf |
dc.publisher.none.fl_str_mv |
AISEL |
publisher.none.fl_str_mv |
AISEL |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597982546591744 |