AI-driven information retrieval system for candidate screening
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/26893 |
Summary: | Efficient screening and evaluation in the recruitment process are tasks that demand substantial time and effort from Human Resources professionals. These processes often suffer from long waiting periods, inconsistent candidate evaluation, and the potential to overlook qualified candidates. In this context, leveraging state-of-the-art natural language processing architectures, specifically large language models (LLMs), holds significant promise. LLMs can generate evaluations using advanced prompt techniques to improve the accuracy and reliability of the output. This thesis researches the feasibility of employing 7 billion parameter LLMs in candidate screening to reduce response times, decrease workload, and improve evaluation consistency. The study involves a comparative analysis of various state-of-the-art large language models to identify those most suitable for this application. Additionally, it examines different prompt engineering techniques to optimize the performance of these models. A comprehensive analysis of the results is conducted to determine the most effective combinations of LLMs and prompt engineering techniques. This includes a two-way validation process, utilizing both the state-of-the-art GPT-4 model and manual human resources validation, to ensure the robustness and reliability of the findings. The outcomes of this thesis aim to enhance the quality of candidate screening by integrating LLMs into the process. Furthermore, this work aspires to provide valuable insights into the capabilities of 7 billion parameter large language models in the field of human resources and their application in real-world scenarios. |
id |
RCAP_624e29cac5ed0bec641dc1fabf6912f8 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/26893 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
AI-driven information retrieval system for candidate screeningSistema de extrapolação de dados com IA para seleção de candidatosCandidate screeningArtificial intelligenceLarge language modelsPrompt engineeringHuman resourcesRecursos humanosSeleção de candidatosInteligência artificialEngenharia de “prompts”Efficient screening and evaluation in the recruitment process are tasks that demand substantial time and effort from Human Resources professionals. These processes often suffer from long waiting periods, inconsistent candidate evaluation, and the potential to overlook qualified candidates. In this context, leveraging state-of-the-art natural language processing architectures, specifically large language models (LLMs), holds significant promise. LLMs can generate evaluations using advanced prompt techniques to improve the accuracy and reliability of the output. This thesis researches the feasibility of employing 7 billion parameter LLMs in candidate screening to reduce response times, decrease workload, and improve evaluation consistency. The study involves a comparative analysis of various state-of-the-art large language models to identify those most suitable for this application. Additionally, it examines different prompt engineering techniques to optimize the performance of these models. A comprehensive analysis of the results is conducted to determine the most effective combinations of LLMs and prompt engineering techniques. This includes a two-way validation process, utilizing both the state-of-the-art GPT-4 model and manual human resources validation, to ensure the robustness and reliability of the findings. The outcomes of this thesis aim to enhance the quality of candidate screening by integrating LLMs into the process. Furthermore, this work aspires to provide valuable insights into the capabilities of 7 billion parameter large language models in the field of human resources and their application in real-world scenarios.Conceição, Luís Manuel da SilvaREPOSITÓRIO P.PORTOSilva, Vasco Reid Ferreira da2024-07-292026-12-17T00:00:00Z2024-07-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/26893urn:tid:203734335enginfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-21T01:52:11Zoai:recipp.ipp.pt:10400.22/26893Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:54:41.982889Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
AI-driven information retrieval system for candidate screening Sistema de extrapolação de dados com IA para seleção de candidatos |
title |
AI-driven information retrieval system for candidate screening |
spellingShingle |
AI-driven information retrieval system for candidate screening Silva, Vasco Reid Ferreira da Candidate screening Artificial intelligence Large language models Prompt engineering Human resources Recursos humanos Seleção de candidatos Inteligência artificial Engenharia de “prompts” |
title_short |
AI-driven information retrieval system for candidate screening |
title_full |
AI-driven information retrieval system for candidate screening |
title_fullStr |
AI-driven information retrieval system for candidate screening |
title_full_unstemmed |
AI-driven information retrieval system for candidate screening |
title_sort |
AI-driven information retrieval system for candidate screening |
author |
Silva, Vasco Reid Ferreira da |
author_facet |
Silva, Vasco Reid Ferreira da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Conceição, Luís Manuel da Silva REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Silva, Vasco Reid Ferreira da |
dc.subject.por.fl_str_mv |
Candidate screening Artificial intelligence Large language models Prompt engineering Human resources Recursos humanos Seleção de candidatos Inteligência artificial Engenharia de “prompts” |
topic |
Candidate screening Artificial intelligence Large language models Prompt engineering Human resources Recursos humanos Seleção de candidatos Inteligência artificial Engenharia de “prompts” |
description |
Efficient screening and evaluation in the recruitment process are tasks that demand substantial time and effort from Human Resources professionals. These processes often suffer from long waiting periods, inconsistent candidate evaluation, and the potential to overlook qualified candidates. In this context, leveraging state-of-the-art natural language processing architectures, specifically large language models (LLMs), holds significant promise. LLMs can generate evaluations using advanced prompt techniques to improve the accuracy and reliability of the output. This thesis researches the feasibility of employing 7 billion parameter LLMs in candidate screening to reduce response times, decrease workload, and improve evaluation consistency. The study involves a comparative analysis of various state-of-the-art large language models to identify those most suitable for this application. Additionally, it examines different prompt engineering techniques to optimize the performance of these models. A comprehensive analysis of the results is conducted to determine the most effective combinations of LLMs and prompt engineering techniques. This includes a two-way validation process, utilizing both the state-of-the-art GPT-4 model and manual human resources validation, to ensure the robustness and reliability of the findings. The outcomes of this thesis aim to enhance the quality of candidate screening by integrating LLMs into the process. Furthermore, this work aspires to provide valuable insights into the capabilities of 7 billion parameter large language models in the field of human resources and their application in real-world scenarios. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07-29 2024-07-29T00:00:00Z 2026-12-17T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/26893 urn:tid:203734335 |
url |
http://hdl.handle.net/10400.22/26893 |
identifier_str_mv |
urn:tid:203734335 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600752019308544 |