Production of new polymeric materials from kraft lignin

Bibliographic Details
Main Author: Vieira, Fernanda Rosa
Publication Date: 2021
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/38143
Summary: The growing interest in the complete or at least partial replacement of petroleum-derived polymers by renewable ones is a common trend towards sustainable economy. Among the polymers from renewable resources, lignin is a natural aromatic irregular polymer, widely available from the kraft black liquor that so far has been mainly burned for energy production. Kraft lignin is very attractive for the development of polyurethanes (PU) upon being oxyalkylated, which increases its added value and can contribute to a more sustainable development. Briefly, in the present work kraft lignin, isolated via the LignoBoost process, was oxyalkylated using propylene carbonate (PC), and the ensuing lignin-based polyol (LBP) was explored as counterpart in the formulation of new PU materials, namely foams and adhesives. After a detailed chemical and structural characterization of the LignoBoost lignin from Eucalyptus globulus used as a renewable raw material, the oxyalkylation process with PC was thoroughly studied regarding the effect of catalysts and other process parameters (time, temperature and quantify of PC) on the quality of LBP. In addition, a Design of Experiments (DoE) was applied to optimize this process towards the production of crude LBP with suitable hydroxyl number (IOH) and viscosity to be used in the preparation of rigid polyurethane foams (RPUF) and PU adhesives This optimization led to a reduction in the amount of PC in the process and to increase the lignin content in crude LBP from 12.5 up to 25. 0% (w/w). Moreover, a methodology to obtain LBP with a lignin content as higher than 25% was later developed. In a following stage, the use of crude LBP in the formulation of RPUF for thermal insulation, PU adhesive and functional composites was explored. Once more, the DoE was used to investigate the effect of the main components in the formulation of RPUF with the aim of producing lightweight bio-based RPUF with low thermal conductivity to be used as a potential thermal insulator material in building construction. The statistical data analysis showed that thermal conductivity and density of RPUF are highly influenced by the content of crude LBP and blowing agent (BA). Furthermore, it was also concluded that the crude LBP has a negative effect on the cell morphology and thermal stability. Yet, the optimization allowed to obtain RPUF using 100% of crude LBP in the formulation which upon fine tuning the type and quantities of BA and surfactant yielded a RPUF which meet the market requirements for application as thermal insulation material in building construction. Specifically, the optimized formulation yielded a bio-based RPUF with low thermal conductivity (0.0289 W/ m. K), low density (33.2 kg/m3) and adequate compressive stress resistance (127 kPa). Furthermore, the use of LBP enhanced the fire resistance of the RFUF as confirmed by cone calorimeter tests. These results proved that lignin- based RPUF is competitive with conventional RPUF. Concomitantly, PU adhesives were developed using 100 % of crude LBP in the formulation, where the effect of the NCO/OH ratio on its properties was studied and compared with those of a commercial PU adhesive (CPA). It was found that the lignin-based PU adhesive presented better chemical resistance and adhesion efficiency than CPA using less polyisocyanate in the formulation. Despite some lower thermal stability and shorter gelation time of lignin-based PU adhesive when compared to those of the CPA, overall, the results have shown it can be an interesting alternative to reduce the use of petroleum-derived polyols and isocyanates. Having optimized the preparation of RPUFs and of PU adhesives derived from oxyalkylated kraft lignin, a dip coating methodology was used to produce conductive bio-based RPUFs using PEDOT: PSS solution. This methodology led to an increase of the electrical conductivity by up to 10 orders of magnitude and a stretchability enhancement of almost 50% hence, it may find potential application in devices for the Internet of Things (IoT).
id RCAP_6198570f6670ff070ef02b546d14b1a5
oai_identifier_str oai:ria.ua.pt:10773/38143
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Production of new polymeric materials from kraft ligninKraft ligninLignin-based polyolOxyalkylationPropylene carbonatePolyurethaneBio-based materialsSustainabilityThe growing interest in the complete or at least partial replacement of petroleum-derived polymers by renewable ones is a common trend towards sustainable economy. Among the polymers from renewable resources, lignin is a natural aromatic irregular polymer, widely available from the kraft black liquor that so far has been mainly burned for energy production. Kraft lignin is very attractive for the development of polyurethanes (PU) upon being oxyalkylated, which increases its added value and can contribute to a more sustainable development. Briefly, in the present work kraft lignin, isolated via the LignoBoost process, was oxyalkylated using propylene carbonate (PC), and the ensuing lignin-based polyol (LBP) was explored as counterpart in the formulation of new PU materials, namely foams and adhesives. After a detailed chemical and structural characterization of the LignoBoost lignin from Eucalyptus globulus used as a renewable raw material, the oxyalkylation process with PC was thoroughly studied regarding the effect of catalysts and other process parameters (time, temperature and quantify of PC) on the quality of LBP. In addition, a Design of Experiments (DoE) was applied to optimize this process towards the production of crude LBP with suitable hydroxyl number (IOH) and viscosity to be used in the preparation of rigid polyurethane foams (RPUF) and PU adhesives This optimization led to a reduction in the amount of PC in the process and to increase the lignin content in crude LBP from 12.5 up to 25. 0% (w/w). Moreover, a methodology to obtain LBP with a lignin content as higher than 25% was later developed. In a following stage, the use of crude LBP in the formulation of RPUF for thermal insulation, PU adhesive and functional composites was explored. Once more, the DoE was used to investigate the effect of the main components in the formulation of RPUF with the aim of producing lightweight bio-based RPUF with low thermal conductivity to be used as a potential thermal insulator material in building construction. The statistical data analysis showed that thermal conductivity and density of RPUF are highly influenced by the content of crude LBP and blowing agent (BA). Furthermore, it was also concluded that the crude LBP has a negative effect on the cell morphology and thermal stability. Yet, the optimization allowed to obtain RPUF using 100% of crude LBP in the formulation which upon fine tuning the type and quantities of BA and surfactant yielded a RPUF which meet the market requirements for application as thermal insulation material in building construction. Specifically, the optimized formulation yielded a bio-based RPUF with low thermal conductivity (0.0289 W/ m. K), low density (33.2 kg/m3) and adequate compressive stress resistance (127 kPa). Furthermore, the use of LBP enhanced the fire resistance of the RFUF as confirmed by cone calorimeter tests. These results proved that lignin- based RPUF is competitive with conventional RPUF. Concomitantly, PU adhesives were developed using 100 % of crude LBP in the formulation, where the effect of the NCO/OH ratio on its properties was studied and compared with those of a commercial PU adhesive (CPA). It was found that the lignin-based PU adhesive presented better chemical resistance and adhesion efficiency than CPA using less polyisocyanate in the formulation. Despite some lower thermal stability and shorter gelation time of lignin-based PU adhesive when compared to those of the CPA, overall, the results have shown it can be an interesting alternative to reduce the use of petroleum-derived polyols and isocyanates. Having optimized the preparation of RPUFs and of PU adhesives derived from oxyalkylated kraft lignin, a dip coating methodology was used to produce conductive bio-based RPUFs using PEDOT: PSS solution. This methodology led to an increase of the electrical conductivity by up to 10 orders of magnitude and a stretchability enhancement of almost 50% hence, it may find potential application in devices for the Internet of Things (IoT).O crescente interesse em substituir completa ou pelo menos parcialmente os polímeros derivados de petróleo por polímeros renováveis é uma tendência comum tendo em vista a transição para uma economia sustentável. Entre os polímeros de origem renovável, a lenhina é um poliol aromático natural, disponível em grandes quantidades no licor negro kraft, sendo que este atualmente é queimado para a produção de energia. A lenhina kraft uma vez modificada por oxialquilação, pode ser uma alternativa muito interessante para o desenvolvimento de poliuretanos (PU), o que aumenta seu valor acrescentado e pode contribuir para o desenvolvimento de produtos mais sustentáveis. Assim sucintamente, no presente trabalho a lenhina kraft, isolada através do processo LignoBoost, foi oxialquilada utilizando carbonato de propileno (CP), e a utilização do poliol à base de lenhina (PBL) resultante foi estudada visando o desenvolvimento de formulações de novos materiais de PU, nomeadamente espumas e adesivos. Após uma detalhada caracterização química e estrutural da lenhina de Eucalyptus globulus que foi utilizada como matéria-prima renovável, procedeu-se a um estudo detalhado do processo de oxialquilação com PC relativamente ao efeito dos catalisadores e dos demais parâmetros do processo (tempo, temperatura e quantidade de CP) na qualidade do PBL. Adicionalmente recorreu-se ao planeamento de experiências (DoE) para otimizar o processo de produção de PBL bruto com o índice de hidroxilo (IOH) e viscosidade adequados para serem utilizados na preparação de espumas rígidas de poliuretano (ERP) e adesivos de PU. Essa otimização levou a uma redução da quantidade de CP no processo, e a um aumento do teor de lenhina no LBP bruto de 12,5 para 25% (m/m). Mais tarde, foi ainda desenvolvida uma metodologia para obtenção de PBL com um teor de lenhina superior a 25%. Numa fase seguinte, estudou-se o uso de LBP bruto na formulação de ERP para isolamento térmico, adesivos de PU e compósitos funcionais. Mais uma vez, o DoE foi utilizado para investigar o efeito dos principais componentes da formulação da ERP, com o objetivo de produzir uma ERP de base biológica leve e de baixa condutividade térmica para ser utilizada como um material isolante térmico com vista a aplicação na construção civil. A análise estatística dos dados mostrou que a condutividade térmica e a densidade da ERP são altamente influenciadas pelo teor de PBL bruto e pelo agente de expansão (AE) utilizado. Este estudo permitiu ainda concluir que o PBL bruto tem um efeito negativo na morfologia celular e na estabilidade térmica. Porém, após ajustes na formulação no que concerne o tipo e quantidade de AE e tensoativo, a otimização permitiu a obtenção de uma ERP utilizando 100% do PBL bruto na sua formulação, a qual cumpre os requisitos do mercado para aplicação como material isolante térmico na construção civil. Especificamente, a formulação otimizada permitiu obter uma ERP de base biológica com baixa condutividade térmica (0,0289 W/m. K), baixa densidade (33,2 kg/m3) e resistência à compressão adequada (127 kPa). Adicionalmente, o uso do PBL levou a uma melhoria do desempenho da ERP relativamente à reação ao fogo, tal como confirmado por calorimetria de cone. Estes resultados provaram que a ERP à base de lenhina desenvolvida neste estudo é competitiva relativamente a ERP convencional. Concomitantemente, foram desenvolvidos adesivos de PU utilizando 100% do PBL bruto na formulação, sendo o efeito do rácio NCO/OH nas propriedades dos adesivos obtidos estudado e comparado com as propriedades de um adesivo de PU comercial (APC). Verificou-se que os adesivos PU à base de lenhina apresentaram melhor resistência química e adesão do que o APC, utilizando menos poliisocianato na formulação. Apesar de terem apresentado uma estabilidade térmica um pouco inferior e menor tempo de gelificação do adesivo, de uma forma geral os PU à base de lenhina quando comparados com o APC, mostraram ser uma alternativa interessante no que concerne a redução do uso de poliois e isocianatos derivados do petróleo. Tendo otimizado a produção de ERP e de adesivos de PU a partir da lenhina kraft oxialquilada, foi utilizada uma metodologia de revestimento por imersão para produzir uma ERP de base biológica semicondutora utilizando uma solução de PEDOT:PSS. Esta metodologia levou a um aumento da condutividade elétrica em até 10 ordens de grandeza e a um aumento de elasticidade do material em quase 50%, tendo por isso potencial aplicação em dispositivos associados à Internet das Coisas.2028-01-24T00:00:00Z2021-12-21T00:00:00Z2021-12-21doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/38143engVieira, Fernanda Rosainfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:46:15Zoai:ria.ua.pt:10773/38143Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:19:35.274974Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Production of new polymeric materials from kraft lignin
title Production of new polymeric materials from kraft lignin
spellingShingle Production of new polymeric materials from kraft lignin
Vieira, Fernanda Rosa
Kraft lignin
Lignin-based polyol
Oxyalkylation
Propylene carbonate
Polyurethane
Bio-based materials
Sustainability
title_short Production of new polymeric materials from kraft lignin
title_full Production of new polymeric materials from kraft lignin
title_fullStr Production of new polymeric materials from kraft lignin
title_full_unstemmed Production of new polymeric materials from kraft lignin
title_sort Production of new polymeric materials from kraft lignin
author Vieira, Fernanda Rosa
author_facet Vieira, Fernanda Rosa
author_role author
dc.contributor.author.fl_str_mv Vieira, Fernanda Rosa
dc.subject.por.fl_str_mv Kraft lignin
Lignin-based polyol
Oxyalkylation
Propylene carbonate
Polyurethane
Bio-based materials
Sustainability
topic Kraft lignin
Lignin-based polyol
Oxyalkylation
Propylene carbonate
Polyurethane
Bio-based materials
Sustainability
description The growing interest in the complete or at least partial replacement of petroleum-derived polymers by renewable ones is a common trend towards sustainable economy. Among the polymers from renewable resources, lignin is a natural aromatic irregular polymer, widely available from the kraft black liquor that so far has been mainly burned for energy production. Kraft lignin is very attractive for the development of polyurethanes (PU) upon being oxyalkylated, which increases its added value and can contribute to a more sustainable development. Briefly, in the present work kraft lignin, isolated via the LignoBoost process, was oxyalkylated using propylene carbonate (PC), and the ensuing lignin-based polyol (LBP) was explored as counterpart in the formulation of new PU materials, namely foams and adhesives. After a detailed chemical and structural characterization of the LignoBoost lignin from Eucalyptus globulus used as a renewable raw material, the oxyalkylation process with PC was thoroughly studied regarding the effect of catalysts and other process parameters (time, temperature and quantify of PC) on the quality of LBP. In addition, a Design of Experiments (DoE) was applied to optimize this process towards the production of crude LBP with suitable hydroxyl number (IOH) and viscosity to be used in the preparation of rigid polyurethane foams (RPUF) and PU adhesives This optimization led to a reduction in the amount of PC in the process and to increase the lignin content in crude LBP from 12.5 up to 25. 0% (w/w). Moreover, a methodology to obtain LBP with a lignin content as higher than 25% was later developed. In a following stage, the use of crude LBP in the formulation of RPUF for thermal insulation, PU adhesive and functional composites was explored. Once more, the DoE was used to investigate the effect of the main components in the formulation of RPUF with the aim of producing lightweight bio-based RPUF with low thermal conductivity to be used as a potential thermal insulator material in building construction. The statistical data analysis showed that thermal conductivity and density of RPUF are highly influenced by the content of crude LBP and blowing agent (BA). Furthermore, it was also concluded that the crude LBP has a negative effect on the cell morphology and thermal stability. Yet, the optimization allowed to obtain RPUF using 100% of crude LBP in the formulation which upon fine tuning the type and quantities of BA and surfactant yielded a RPUF which meet the market requirements for application as thermal insulation material in building construction. Specifically, the optimized formulation yielded a bio-based RPUF with low thermal conductivity (0.0289 W/ m. K), low density (33.2 kg/m3) and adequate compressive stress resistance (127 kPa). Furthermore, the use of LBP enhanced the fire resistance of the RFUF as confirmed by cone calorimeter tests. These results proved that lignin- based RPUF is competitive with conventional RPUF. Concomitantly, PU adhesives were developed using 100 % of crude LBP in the formulation, where the effect of the NCO/OH ratio on its properties was studied and compared with those of a commercial PU adhesive (CPA). It was found that the lignin-based PU adhesive presented better chemical resistance and adhesion efficiency than CPA using less polyisocyanate in the formulation. Despite some lower thermal stability and shorter gelation time of lignin-based PU adhesive when compared to those of the CPA, overall, the results have shown it can be an interesting alternative to reduce the use of petroleum-derived polyols and isocyanates. Having optimized the preparation of RPUFs and of PU adhesives derived from oxyalkylated kraft lignin, a dip coating methodology was used to produce conductive bio-based RPUFs using PEDOT: PSS solution. This methodology led to an increase of the electrical conductivity by up to 10 orders of magnitude and a stretchability enhancement of almost 50% hence, it may find potential application in devices for the Internet of Things (IoT).
publishDate 2021
dc.date.none.fl_str_mv 2021-12-21T00:00:00Z
2021-12-21
2028-01-24T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/38143
url http://hdl.handle.net/10773/38143
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594503182680064