Microalgae hydrolysates as functional ingredients

Bibliographic Details
Main Author: Cunha, S. A.
Publication Date: 2021
Other Authors: Nova, P., Silva, J. L. da, Pintado, M. E.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.14/40301
Summary: Microalgae have been used in food and cosmetic industries due to their richness in compounds with high biological value, such as proteins, essential amino acids, vitamins and minerals [1]. Several microalgae contain high protein content, similar to other common protein sources such as meat and soybean [1], making them a promising source of bioactive peptides. Bioactive peptides are inert inside proteins but can show several interesting properties when isolated [2]. Antioxidant, antihypertensive, antidiabetic, anticancer, anti-inflammatory and anti-aging are some properties that can be found described in bioactive peptides. Bioactive peptides may be more easily absorbed by the gastrointestinal tract than the intact protein, which allied with their potential bioactivities make them interesting for the development of functional foods, with health benefits for the consumer. Hypertension is one of the main causes of cardiovascular diseases, which can lead to heart attack or stroke. Angiotensin-converting enzyme (ACE) is involved in blood pressure regulation, thus inhibiting it can help to control high blood pressure. Thus, this research aimed to produce water soluble hydrolysates rich in proteins and bioactive peptides, with antioxidant and anti-hypertensive potential, from the five microalgae species Chlorella vulgaris, Nannochloropsis oceanica, Tetraselmis sp., Scenedesmus obliquus and Phaeodactylum tricornutum. The five microalgae species were submitted to an enzymatic hydrolysis (one of the most described methods for producing bioactive peptides) with a cellulase and a subtilisin protease, using previously optimized methods. Prior to the enzymatic hydrolysis, C. vulgaris was submitted to an acid hydrolysis, using a weak and food-grade acid. The anti-hypertensive potential was evaluated by the hydrolysate’s ability of inhibiting ACE. Previous studies [3] showed that C. vulgaris and S. obliquus hydrolysates stood out with the higher antioxidant potential. All the hydrolysates demonstrated anti-hypertensive potential by showing an IC50 lower than 500 μg protein/mL for ACE inhibition (Table 1). Thus, production of peptide hydrolysates from microalgae may represent an interesting approach for the development of sustainable, natural functional ingredients to be used to prevent hypertension on the consumers by incorporating it in food matrices.In conclusion, the enzymatic hydrolysis of microalgae allowed to produce hydrolysates with antioxidant and anti-hypertensive potential. Further studies should be done to confirm the anti-hypertensive ability after the gastrointestinal digestion of the hydrolysates. If the bioactivity is maintained, these hydrolysates may be incorporated in food matrices as functional ingredients, contributing to the development of functional foods with antioxidant and anti-hypertensive benefits for the consumers.
id RCAP_6047f9e8f3da84e05d051109f49baf56
oai_identifier_str oai:repositorio.ucp.pt:10400.14/40301
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Microalgae hydrolysates as functional ingredientsMicroalgae have been used in food and cosmetic industries due to their richness in compounds with high biological value, such as proteins, essential amino acids, vitamins and minerals [1]. Several microalgae contain high protein content, similar to other common protein sources such as meat and soybean [1], making them a promising source of bioactive peptides. Bioactive peptides are inert inside proteins but can show several interesting properties when isolated [2]. Antioxidant, antihypertensive, antidiabetic, anticancer, anti-inflammatory and anti-aging are some properties that can be found described in bioactive peptides. Bioactive peptides may be more easily absorbed by the gastrointestinal tract than the intact protein, which allied with their potential bioactivities make them interesting for the development of functional foods, with health benefits for the consumer. Hypertension is one of the main causes of cardiovascular diseases, which can lead to heart attack or stroke. Angiotensin-converting enzyme (ACE) is involved in blood pressure regulation, thus inhibiting it can help to control high blood pressure. Thus, this research aimed to produce water soluble hydrolysates rich in proteins and bioactive peptides, with antioxidant and anti-hypertensive potential, from the five microalgae species Chlorella vulgaris, Nannochloropsis oceanica, Tetraselmis sp., Scenedesmus obliquus and Phaeodactylum tricornutum. The five microalgae species were submitted to an enzymatic hydrolysis (one of the most described methods for producing bioactive peptides) with a cellulase and a subtilisin protease, using previously optimized methods. Prior to the enzymatic hydrolysis, C. vulgaris was submitted to an acid hydrolysis, using a weak and food-grade acid. The anti-hypertensive potential was evaluated by the hydrolysate’s ability of inhibiting ACE. Previous studies [3] showed that C. vulgaris and S. obliquus hydrolysates stood out with the higher antioxidant potential. All the hydrolysates demonstrated anti-hypertensive potential by showing an IC50 lower than 500 μg protein/mL for ACE inhibition (Table 1). Thus, production of peptide hydrolysates from microalgae may represent an interesting approach for the development of sustainable, natural functional ingredients to be used to prevent hypertension on the consumers by incorporating it in food matrices.In conclusion, the enzymatic hydrolysis of microalgae allowed to produce hydrolysates with antioxidant and anti-hypertensive potential. Further studies should be done to confirm the anti-hypertensive ability after the gastrointestinal digestion of the hydrolysates. If the bioactivity is maintained, these hydrolysates may be incorporated in food matrices as functional ingredients, contributing to the development of functional foods with antioxidant and anti-hypertensive benefits for the consumers.VeritatiCunha, S. A.Nova, P.Silva, J. L. daPintado, M. E.2023-02-20T16:13:13Z2021-112021-11-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.14/40301enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-13T13:41:01Zoai:repositorio.ucp.pt:10400.14/40301Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:58:55.933422Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Microalgae hydrolysates as functional ingredients
title Microalgae hydrolysates as functional ingredients
spellingShingle Microalgae hydrolysates as functional ingredients
Cunha, S. A.
title_short Microalgae hydrolysates as functional ingredients
title_full Microalgae hydrolysates as functional ingredients
title_fullStr Microalgae hydrolysates as functional ingredients
title_full_unstemmed Microalgae hydrolysates as functional ingredients
title_sort Microalgae hydrolysates as functional ingredients
author Cunha, S. A.
author_facet Cunha, S. A.
Nova, P.
Silva, J. L. da
Pintado, M. E.
author_role author
author2 Nova, P.
Silva, J. L. da
Pintado, M. E.
author2_role author
author
author
dc.contributor.none.fl_str_mv Veritati
dc.contributor.author.fl_str_mv Cunha, S. A.
Nova, P.
Silva, J. L. da
Pintado, M. E.
description Microalgae have been used in food and cosmetic industries due to their richness in compounds with high biological value, such as proteins, essential amino acids, vitamins and minerals [1]. Several microalgae contain high protein content, similar to other common protein sources such as meat and soybean [1], making them a promising source of bioactive peptides. Bioactive peptides are inert inside proteins but can show several interesting properties when isolated [2]. Antioxidant, antihypertensive, antidiabetic, anticancer, anti-inflammatory and anti-aging are some properties that can be found described in bioactive peptides. Bioactive peptides may be more easily absorbed by the gastrointestinal tract than the intact protein, which allied with their potential bioactivities make them interesting for the development of functional foods, with health benefits for the consumer. Hypertension is one of the main causes of cardiovascular diseases, which can lead to heart attack or stroke. Angiotensin-converting enzyme (ACE) is involved in blood pressure regulation, thus inhibiting it can help to control high blood pressure. Thus, this research aimed to produce water soluble hydrolysates rich in proteins and bioactive peptides, with antioxidant and anti-hypertensive potential, from the five microalgae species Chlorella vulgaris, Nannochloropsis oceanica, Tetraselmis sp., Scenedesmus obliquus and Phaeodactylum tricornutum. The five microalgae species were submitted to an enzymatic hydrolysis (one of the most described methods for producing bioactive peptides) with a cellulase and a subtilisin protease, using previously optimized methods. Prior to the enzymatic hydrolysis, C. vulgaris was submitted to an acid hydrolysis, using a weak and food-grade acid. The anti-hypertensive potential was evaluated by the hydrolysate’s ability of inhibiting ACE. Previous studies [3] showed that C. vulgaris and S. obliquus hydrolysates stood out with the higher antioxidant potential. All the hydrolysates demonstrated anti-hypertensive potential by showing an IC50 lower than 500 μg protein/mL for ACE inhibition (Table 1). Thus, production of peptide hydrolysates from microalgae may represent an interesting approach for the development of sustainable, natural functional ingredients to be used to prevent hypertension on the consumers by incorporating it in food matrices.In conclusion, the enzymatic hydrolysis of microalgae allowed to produce hydrolysates with antioxidant and anti-hypertensive potential. Further studies should be done to confirm the anti-hypertensive ability after the gastrointestinal digestion of the hydrolysates. If the bioactivity is maintained, these hydrolysates may be incorporated in food matrices as functional ingredients, contributing to the development of functional foods with antioxidant and anti-hypertensive benefits for the consumers.
publishDate 2021
dc.date.none.fl_str_mv 2021-11
2021-11-01T00:00:00Z
2023-02-20T16:13:13Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.14/40301
url http://hdl.handle.net/10400.14/40301
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833601188096901120