The number of parking functions with center of a given length

Detalhes bibliográficos
Autor(a) principal: Duarte, Rui
Data de Publicação: 2019
Outros Autores: Guedes de Oliveira, António
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/25846
Resumo: Let 1≤r≤n and suppose that, when the Depth-first Search Algorithm is applied to a given rooted labeled tree on n+1 vertices, exactly r vertices are visited before backtracking. Let R be the set of trees with this property. We count the number of elements of R. For this purpose, we first consider a bijection, due to Perkinson, Yang and Yu, that maps R onto the set of parking function with center (defined by the authors in a previous article) of size r. A second bijection maps this set onto the set of parking functions with run r, a property that we introduce here. We then prove that the number of length n parking functions with a given run is the number of length n rook words (defined by Leven, Rhoades and Wilson) with the same run. This is done by counting related lattice paths in a ladder-shaped region. We finally count the number of length n rook words with run r, which is the answer to our initial question.
id RCAP_603a64db3ee74e041e3c8fcdecfa4368
oai_identifier_str oai:ria.ua.pt:10773/25846
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling The number of parking functions with center of a given lengthParking functionsShi arrangementIsh arrangementLet 1≤r≤n and suppose that, when the Depth-first Search Algorithm is applied to a given rooted labeled tree on n+1 vertices, exactly r vertices are visited before backtracking. Let R be the set of trees with this property. We count the number of elements of R. For this purpose, we first consider a bijection, due to Perkinson, Yang and Yu, that maps R onto the set of parking function with center (defined by the authors in a previous article) of size r. A second bijection maps this set onto the set of parking functions with run r, a property that we introduce here. We then prove that the number of length n parking functions with a given run is the number of length n rook words (defined by Leven, Rhoades and Wilson) with the same run. This is done by counting related lattice paths in a ladder-shaped region. We finally count the number of length n rook words with run r, which is the answer to our initial question.Elsevier2020-06-01T00:00:00Z2019-06-01T00:00:00Z2019-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/25846eng0196-885810.1016/j.aam.2019.02.004Duarte, RuiGuedes de Oliveira, Antónioinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:19:59Zoai:ria.ua.pt:10773/25846Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:05:02.642030Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv The number of parking functions with center of a given length
title The number of parking functions with center of a given length
spellingShingle The number of parking functions with center of a given length
Duarte, Rui
Parking functions
Shi arrangement
Ish arrangement
title_short The number of parking functions with center of a given length
title_full The number of parking functions with center of a given length
title_fullStr The number of parking functions with center of a given length
title_full_unstemmed The number of parking functions with center of a given length
title_sort The number of parking functions with center of a given length
author Duarte, Rui
author_facet Duarte, Rui
Guedes de Oliveira, António
author_role author
author2 Guedes de Oliveira, António
author2_role author
dc.contributor.author.fl_str_mv Duarte, Rui
Guedes de Oliveira, António
dc.subject.por.fl_str_mv Parking functions
Shi arrangement
Ish arrangement
topic Parking functions
Shi arrangement
Ish arrangement
description Let 1≤r≤n and suppose that, when the Depth-first Search Algorithm is applied to a given rooted labeled tree on n+1 vertices, exactly r vertices are visited before backtracking. Let R be the set of trees with this property. We count the number of elements of R. For this purpose, we first consider a bijection, due to Perkinson, Yang and Yu, that maps R onto the set of parking function with center (defined by the authors in a previous article) of size r. A second bijection maps this set onto the set of parking functions with run r, a property that we introduce here. We then prove that the number of length n parking functions with a given run is the number of length n rook words (defined by Leven, Rhoades and Wilson) with the same run. This is done by counting related lattice paths in a ladder-shaped region. We finally count the number of length n rook words with run r, which is the answer to our initial question.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-01T00:00:00Z
2019-06
2020-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/25846
url http://hdl.handle.net/10773/25846
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0196-8858
10.1016/j.aam.2019.02.004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594274015346688