Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10316/112290 https://doi.org/10.1016/j.pulmoe.2022.10.005 |
Summary: | Background: The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma. |
id |
RCAP_5e3a79c0a229ecd873b1e0e8b3df638e |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/112290 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth appAsthmaRhinitisCluster analysisTreatmentControlHumansResearch DesignMobile ApplicationsRhinitis, AllergicAsthmaBackground: The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.MASK-air has been supported by EU grants (POLLAR, EIT Health; Structural and Development Funds, Twinning, EIP on AHA and H2020) and educational grants from Mylan-Viatris, ALK,Y. GSK, Novartis and Uriach. There was no specific funding for this studY.Elsevier2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/112290https://hdl.handle.net/10316/112290https://doi.org/10.1016/j.pulmoe.2022.10.005eng25310437Bousquet, J.Sousa-Pinto, B.Anto, J. M.Amaral, R.Brussino, L.Canonica, G. W.Cruz, A. A.Gemicioglu, B.Haahtela, T.Kupczyk, M.Kvedariene, V.Larenas-Linnemann, D. E.Louis, R.Pham-Thi, N.Puggioni, F.Regateiro, F. S.Romantowski, J.Sastre, J.Scichilone, N.Taborda-Barata, L.Ventura, M. T.Agache, I.Bedbrook, A.Bergmann, K. C.Bosnic-Anticevich, S.Bonini, M.Boulet, L-PBrusselle, G.Buhl, R.Cecchi, L.Charpin, D.Chaves-Loureiro, C.Czarlewski, W.de Blay, F.Devillier, P.Joos, G.Jutel, M.Klimek, L.Kuna, P.Laune, D.Pech, J. L.Makela, M.Morais-Almeida, M.Nadif, R.Niedoszytko, M.Ohta, K.Papadopoulos, N. G.Papi, A.Yeverino, D. R.Roche, N.Sá-Sousa, A.Samolinski, B.Shamji, M. H.Sheikh, A.Suppli Ulrik, C.Usmani, O. S.Valiulis, A.Vandenplas, O.Yorgancioglu, A.Zuberbier, T.Fonseca, J. A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-09-30T13:51:05Zoai:estudogeral.uc.pt:10316/112290Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:04:38.641607Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app |
title |
Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app |
spellingShingle |
Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app Bousquet, J. Asthma Rhinitis Cluster analysis Treatment Control Humans Research Design Mobile Applications Rhinitis, Allergic Asthma |
title_short |
Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app |
title_full |
Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app |
title_fullStr |
Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app |
title_full_unstemmed |
Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app |
title_sort |
Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app |
author |
Bousquet, J. |
author_facet |
Bousquet, J. Sousa-Pinto, B. Anto, J. M. Amaral, R. Brussino, L. Canonica, G. W. Cruz, A. A. Gemicioglu, B. Haahtela, T. Kupczyk, M. Kvedariene, V. Larenas-Linnemann, D. E. Louis, R. Pham-Thi, N. Puggioni, F. Regateiro, F. S. Romantowski, J. Sastre, J. Scichilone, N. Taborda-Barata, L. Ventura, M. T. Agache, I. Bedbrook, A. Bergmann, K. C. Bosnic-Anticevich, S. Bonini, M. Boulet, L-P Brusselle, G. Buhl, R. Cecchi, L. Charpin, D. Chaves-Loureiro, C. Czarlewski, W. de Blay, F. Devillier, P. Joos, G. Jutel, M. Klimek, L. Kuna, P. Laune, D. Pech, J. L. Makela, M. Morais-Almeida, M. Nadif, R. Niedoszytko, M. Ohta, K. Papadopoulos, N. G. Papi, A. Yeverino, D. R. Roche, N. Sá-Sousa, A. Samolinski, B. Shamji, M. H. Sheikh, A. Suppli Ulrik, C. Usmani, O. S. Valiulis, A. Vandenplas, O. Yorgancioglu, A. Zuberbier, T. Fonseca, J. A. |
author_role |
author |
author2 |
Sousa-Pinto, B. Anto, J. M. Amaral, R. Brussino, L. Canonica, G. W. Cruz, A. A. Gemicioglu, B. Haahtela, T. Kupczyk, M. Kvedariene, V. Larenas-Linnemann, D. E. Louis, R. Pham-Thi, N. Puggioni, F. Regateiro, F. S. Romantowski, J. Sastre, J. Scichilone, N. Taborda-Barata, L. Ventura, M. T. Agache, I. Bedbrook, A. Bergmann, K. C. Bosnic-Anticevich, S. Bonini, M. Boulet, L-P Brusselle, G. Buhl, R. Cecchi, L. Charpin, D. Chaves-Loureiro, C. Czarlewski, W. de Blay, F. Devillier, P. Joos, G. Jutel, M. Klimek, L. Kuna, P. Laune, D. Pech, J. L. Makela, M. Morais-Almeida, M. Nadif, R. Niedoszytko, M. Ohta, K. Papadopoulos, N. G. Papi, A. Yeverino, D. R. Roche, N. Sá-Sousa, A. Samolinski, B. Shamji, M. H. Sheikh, A. Suppli Ulrik, C. Usmani, O. S. Valiulis, A. Vandenplas, O. Yorgancioglu, A. Zuberbier, T. Fonseca, J. A. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Bousquet, J. Sousa-Pinto, B. Anto, J. M. Amaral, R. Brussino, L. Canonica, G. W. Cruz, A. A. Gemicioglu, B. Haahtela, T. Kupczyk, M. Kvedariene, V. Larenas-Linnemann, D. E. Louis, R. Pham-Thi, N. Puggioni, F. Regateiro, F. S. Romantowski, J. Sastre, J. Scichilone, N. Taborda-Barata, L. Ventura, M. T. Agache, I. Bedbrook, A. Bergmann, K. C. Bosnic-Anticevich, S. Bonini, M. Boulet, L-P Brusselle, G. Buhl, R. Cecchi, L. Charpin, D. Chaves-Loureiro, C. Czarlewski, W. de Blay, F. Devillier, P. Joos, G. Jutel, M. Klimek, L. Kuna, P. Laune, D. Pech, J. L. Makela, M. Morais-Almeida, M. Nadif, R. Niedoszytko, M. Ohta, K. Papadopoulos, N. G. Papi, A. Yeverino, D. R. Roche, N. Sá-Sousa, A. Samolinski, B. Shamji, M. H. Sheikh, A. Suppli Ulrik, C. Usmani, O. S. Valiulis, A. Vandenplas, O. Yorgancioglu, A. Zuberbier, T. Fonseca, J. A. |
dc.subject.por.fl_str_mv |
Asthma Rhinitis Cluster analysis Treatment Control Humans Research Design Mobile Applications Rhinitis, Allergic Asthma |
topic |
Asthma Rhinitis Cluster analysis Treatment Control Humans Research Design Mobile Applications Rhinitis, Allergic Asthma |
description |
Background: The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/112290 https://hdl.handle.net/10316/112290 https://doi.org/10.1016/j.pulmoe.2022.10.005 |
url |
https://hdl.handle.net/10316/112290 https://doi.org/10.1016/j.pulmoe.2022.10.005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
25310437 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602568603828224 |