Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app

Bibliographic Details
Main Author: Bousquet, J.
Publication Date: 2023
Other Authors: Sousa-Pinto, B., Anto, J. M., Amaral, R., Brussino, L., Canonica, G. W., Cruz, A. A., Gemicioglu, B., Haahtela, T., Kupczyk, M., Kvedariene, V., Larenas-Linnemann, D. E., Louis, R., Pham-Thi, N., Puggioni, F., Regateiro, F. S., Romantowski, J., Sastre, J., Scichilone, N., Taborda-Barata, L., Ventura, M. T., Agache, I., Bedbrook, A., Bergmann, K. C., Bosnic-Anticevich, S., Bonini, M., Boulet, L-P, Brusselle, G., Buhl, R., Cecchi, L., Charpin, D., Chaves-Loureiro, C., Czarlewski, W., de Blay, F., Devillier, P., Joos, G., Jutel, M., Klimek, L., Kuna, P., Laune, D., Pech, J. L., Makela, M., Morais-Almeida, M., Nadif, R., Niedoszytko, M., Ohta, K., Papadopoulos, N. G., Papi, A., Yeverino, D. R., Roche, N., Sá-Sousa, A., Samolinski, B., Shamji, M. H., Sheikh, A., Suppli Ulrik, C., Usmani, O. S., Valiulis, A., Vandenplas, O., Yorgancioglu, A., Zuberbier, T., Fonseca, J. A.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/112290
https://doi.org/10.1016/j.pulmoe.2022.10.005
Summary: Background: The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.
id RCAP_5e3a79c0a229ecd873b1e0e8b3df638e
oai_identifier_str oai:estudogeral.uc.pt:10316/112290
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth appAsthmaRhinitisCluster analysisTreatmentControlHumansResearch DesignMobile ApplicationsRhinitis, AllergicAsthmaBackground: The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.MASK-air has been supported by EU grants (POLLAR, EIT Health; Structural and Development Funds, Twinning, EIP on AHA and H2020) and educational grants from Mylan-Viatris, ALK,Y. GSK, Novartis and Uriach. There was no specific funding for this studY.Elsevier2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/112290https://hdl.handle.net/10316/112290https://doi.org/10.1016/j.pulmoe.2022.10.005eng25310437Bousquet, J.Sousa-Pinto, B.Anto, J. M.Amaral, R.Brussino, L.Canonica, G. W.Cruz, A. A.Gemicioglu, B.Haahtela, T.Kupczyk, M.Kvedariene, V.Larenas-Linnemann, D. E.Louis, R.Pham-Thi, N.Puggioni, F.Regateiro, F. S.Romantowski, J.Sastre, J.Scichilone, N.Taborda-Barata, L.Ventura, M. T.Agache, I.Bedbrook, A.Bergmann, K. C.Bosnic-Anticevich, S.Bonini, M.Boulet, L-PBrusselle, G.Buhl, R.Cecchi, L.Charpin, D.Chaves-Loureiro, C.Czarlewski, W.de Blay, F.Devillier, P.Joos, G.Jutel, M.Klimek, L.Kuna, P.Laune, D.Pech, J. L.Makela, M.Morais-Almeida, M.Nadif, R.Niedoszytko, M.Ohta, K.Papadopoulos, N. G.Papi, A.Yeverino, D. R.Roche, N.Sá-Sousa, A.Samolinski, B.Shamji, M. H.Sheikh, A.Suppli Ulrik, C.Usmani, O. S.Valiulis, A.Vandenplas, O.Yorgancioglu, A.Zuberbier, T.Fonseca, J. A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-09-30T13:51:05Zoai:estudogeral.uc.pt:10316/112290Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:04:38.641607Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
title Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
spellingShingle Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
Bousquet, J.
Asthma
Rhinitis
Cluster analysis
Treatment
Control
Humans
Research Design
Mobile Applications
Rhinitis, Allergic
Asthma
title_short Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
title_full Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
title_fullStr Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
title_full_unstemmed Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
title_sort Identification by cluster analysis of patients with asthma and nasal symptoms using the MASK-air® mHealth app
author Bousquet, J.
author_facet Bousquet, J.
Sousa-Pinto, B.
Anto, J. M.
Amaral, R.
Brussino, L.
Canonica, G. W.
Cruz, A. A.
Gemicioglu, B.
Haahtela, T.
Kupczyk, M.
Kvedariene, V.
Larenas-Linnemann, D. E.
Louis, R.
Pham-Thi, N.
Puggioni, F.
Regateiro, F. S.
Romantowski, J.
Sastre, J.
Scichilone, N.
Taborda-Barata, L.
Ventura, M. T.
Agache, I.
Bedbrook, A.
Bergmann, K. C.
Bosnic-Anticevich, S.
Bonini, M.
Boulet, L-P
Brusselle, G.
Buhl, R.
Cecchi, L.
Charpin, D.
Chaves-Loureiro, C.
Czarlewski, W.
de Blay, F.
Devillier, P.
Joos, G.
Jutel, M.
Klimek, L.
Kuna, P.
Laune, D.
Pech, J. L.
Makela, M.
Morais-Almeida, M.
Nadif, R.
Niedoszytko, M.
Ohta, K.
Papadopoulos, N. G.
Papi, A.
Yeverino, D. R.
Roche, N.
Sá-Sousa, A.
Samolinski, B.
Shamji, M. H.
Sheikh, A.
Suppli Ulrik, C.
Usmani, O. S.
Valiulis, A.
Vandenplas, O.
Yorgancioglu, A.
Zuberbier, T.
Fonseca, J. A.
author_role author
author2 Sousa-Pinto, B.
Anto, J. M.
Amaral, R.
Brussino, L.
Canonica, G. W.
Cruz, A. A.
Gemicioglu, B.
Haahtela, T.
Kupczyk, M.
Kvedariene, V.
Larenas-Linnemann, D. E.
Louis, R.
Pham-Thi, N.
Puggioni, F.
Regateiro, F. S.
Romantowski, J.
Sastre, J.
Scichilone, N.
Taborda-Barata, L.
Ventura, M. T.
Agache, I.
Bedbrook, A.
Bergmann, K. C.
Bosnic-Anticevich, S.
Bonini, M.
Boulet, L-P
Brusselle, G.
Buhl, R.
Cecchi, L.
Charpin, D.
Chaves-Loureiro, C.
Czarlewski, W.
de Blay, F.
Devillier, P.
Joos, G.
Jutel, M.
Klimek, L.
Kuna, P.
Laune, D.
Pech, J. L.
Makela, M.
Morais-Almeida, M.
Nadif, R.
Niedoszytko, M.
Ohta, K.
Papadopoulos, N. G.
Papi, A.
Yeverino, D. R.
Roche, N.
Sá-Sousa, A.
Samolinski, B.
Shamji, M. H.
Sheikh, A.
Suppli Ulrik, C.
Usmani, O. S.
Valiulis, A.
Vandenplas, O.
Yorgancioglu, A.
Zuberbier, T.
Fonseca, J. A.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Bousquet, J.
Sousa-Pinto, B.
Anto, J. M.
Amaral, R.
Brussino, L.
Canonica, G. W.
Cruz, A. A.
Gemicioglu, B.
Haahtela, T.
Kupczyk, M.
Kvedariene, V.
Larenas-Linnemann, D. E.
Louis, R.
Pham-Thi, N.
Puggioni, F.
Regateiro, F. S.
Romantowski, J.
Sastre, J.
Scichilone, N.
Taborda-Barata, L.
Ventura, M. T.
Agache, I.
Bedbrook, A.
Bergmann, K. C.
Bosnic-Anticevich, S.
Bonini, M.
Boulet, L-P
Brusselle, G.
Buhl, R.
Cecchi, L.
Charpin, D.
Chaves-Loureiro, C.
Czarlewski, W.
de Blay, F.
Devillier, P.
Joos, G.
Jutel, M.
Klimek, L.
Kuna, P.
Laune, D.
Pech, J. L.
Makela, M.
Morais-Almeida, M.
Nadif, R.
Niedoszytko, M.
Ohta, K.
Papadopoulos, N. G.
Papi, A.
Yeverino, D. R.
Roche, N.
Sá-Sousa, A.
Samolinski, B.
Shamji, M. H.
Sheikh, A.
Suppli Ulrik, C.
Usmani, O. S.
Valiulis, A.
Vandenplas, O.
Yorgancioglu, A.
Zuberbier, T.
Fonseca, J. A.
dc.subject.por.fl_str_mv Asthma
Rhinitis
Cluster analysis
Treatment
Control
Humans
Research Design
Mobile Applications
Rhinitis, Allergic
Asthma
topic Asthma
Rhinitis
Cluster analysis
Treatment
Control
Humans
Research Design
Mobile Applications
Rhinitis, Allergic
Asthma
description Background: The self-reporting of asthma frequently leads to patient misidentification in epidemiological studies. Strategies combining the triangulation of data sources may help to improve the identification of people with asthma. We aimed to combine information from the self-reporting of asthma, medication use and symptoms to identify asthma patterns in the users of an mHealth app. Methods: We studied MASK-air users who reported their daily asthma symptoms (assessed by a 0-100 visual analogue scale “VAS Asthma”) at least three times (either in three different months or in any period). K-means cluster analysis methods were applied to identify asthma patterns based on: (i) whether the user self-reported asthma; (ii) whether the user reported asthma medication use and (iii) VAS asthma. Clusters were compared by the number of medications used, VAS asthma levels and Control of Asthma and Allergic Rhinitis Test (CARAT) levels. Findings: We assessed a total of 8,075 MASK-air users. The main clustering approach resulted in the identification of seven groups. These groups were interpreted as probable: (i) severe/uncontrolled asthma despite treatment (11.9-16.1% of MASK-air users); (ii) treated and partly-controlled asthma (6.3-9.7%); (iii) treated and controlled asthma (4.6-5.5%); (iv) untreated uncontrolled asthma (18.2-20.5%); (v) untreated partly-controlled asthma (10.1-10.7%); (vi) untreated controlled asthma (6.7-8.5%) and (vii) no evidence of asthma (33.0-40.2%). This classification was validated in a study of 192 patients enrolled by physicians. Interpretation: We identified seven profiles based on the probability of having asthma and on its level of control. mHealth tools are hypothesis-generating and complement classical epidemiological approaches in identifying patients with asthma.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/112290
https://hdl.handle.net/10316/112290
https://doi.org/10.1016/j.pulmoe.2022.10.005
url https://hdl.handle.net/10316/112290
https://doi.org/10.1016/j.pulmoe.2022.10.005
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 25310437
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602568603828224