Python for financial engineers: Mastering four moments in portfolio management

Bibliographic Details
Main Author: Chafik, Mohamed Amine CHAFIK
Publication Date: 2024
Other Authors: Benslimane, Adda, Boussedra, Faouzi
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://doi.org/10.23882/emss.24216
Summary: This research conducts a comprehensive analysis aimed at optimizing portfolios comprising 14 stocks listed on the Moroccan stock exchange. Our journey culminates in the construction of portfolios that are meticulously designed to maximize returns while prudently managing risk. These portfolios are the result of an exhaustive Monte Carlo simulation that explored over three million unique portfolio combinations. The simulations take into account the skewness and kurtosis of the return distributions, offering investors a robust framework for decision-making.We collected historical data for theses 14 stocks on the Moroccan market exchange by accessing 5 years' worth of historical data from investing.com.We explore the concepts of Modern Portfolio Theory (MPT), which forms the backbone of our approach, and we employ the power of mathematics and Python programming to bring forth insights that can inform sound investment decisions.The primary focus of this study centers on the incorporation of higher statistical moments from the returns of key financial indices, with a particular emphasis on their skewness and kurtosis characteristics. To achieve this goal, various evaluative criteria derived from these statistical parameters are introduced and thoroughly investigated.Within this research framework, we confront a spectrum of optimization challenges, including the maximization of skewness, and minimization of kurtosis.
id RCAP_5d62aedd9e42bb37322032ea59b42b5c
oai_identifier_str oai:ojs2.revistamultidisciplinar.com:article/216
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Python for financial engineers: Mastering four moments in portfolio managementPython para engenheiros financeiros: Dominando os quatro momentos na gestão de portfólioAssetsInvestmentPortfolio theoryPython programmingDigital ManagementAtivosInvestimentoTeoria da carteiraProgramação PythonGestão digitalThis research conducts a comprehensive analysis aimed at optimizing portfolios comprising 14 stocks listed on the Moroccan stock exchange. Our journey culminates in the construction of portfolios that are meticulously designed to maximize returns while prudently managing risk. These portfolios are the result of an exhaustive Monte Carlo simulation that explored over three million unique portfolio combinations. The simulations take into account the skewness and kurtosis of the return distributions, offering investors a robust framework for decision-making.We collected historical data for theses 14 stocks on the Moroccan market exchange by accessing 5 years' worth of historical data from investing.com.We explore the concepts of Modern Portfolio Theory (MPT), which forms the backbone of our approach, and we employ the power of mathematics and Python programming to bring forth insights that can inform sound investment decisions.The primary focus of this study centers on the incorporation of higher statistical moments from the returns of key financial indices, with a particular emphasis on their skewness and kurtosis characteristics. To achieve this goal, various evaluative criteria derived from these statistical parameters are introduced and thoroughly investigated.Within this research framework, we confront a spectrum of optimization challenges, including the maximization of skewness, and minimization of kurtosis.Este estudo efetua uma análise exaustiva com o objetivo de otimizar carteiras compostas por 14 ações cotadas na Bolsa de Valores de Marrocos. A nossa viagem culmina com a construção de carteiras meticulosamente concebidas para maximizar os rendimentos e gerir prudentemente o risco. Estas carteiras são o resultado de uma simulação exaustiva de Monte Carlo que explorou mais de três milhões de combinações únicas de carteiras. As simulações têm em conta a assimetria e a curtose das distribuições de rendibilidade, oferecendo aos investidores um quadro robusto para a tomada de decisões.Recolhemos dados históricos para estas 14 ações na bolsa de valores marroquina, acedendo a 5 anos de dados históricos da investing.com. Exploramos os conceitos da Teoria Moderna da Carteira (MPT), que constitui a espinha dorsal da nossa abordagem, e empregamos o poder da matemática e da programação Python para obter conhecimentos que podem informar decisões de investimento sólidas.O foco principal deste estudo centra-se na incorporação de momentos estatísticos superiores dos retornos dos principais índices financeiros, com particular ênfase nas suas características de assimetria e curtose. Para atingir este objetivo, são introduzidos e investigados vários critérios de avaliação derivados destes parâmetros estatísticos. Dentro deste quadro de investigação, confrontamos um espetro de desafios de otimização, incluindo a maximização da assimetria e a minimização da curtose.NMd, Núcleo Multidisciplinar2024-03-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.23882/emss.24216https://doi.org/10.23882/emss.24216[RMd] RevistaMultidisciplinar; Vol. 6 No. 2 (2024): lnterdisciplinary Perspectives on Economic Development; e202412[RMd] RevistaMultidisciplinar; Vol. 6 Núm. 2 (2024): Perspectivas lnterdisciplinarias sobre el desarrollo económico; e202412[RMd] Revue Multidisciplinaire; Vol. 6 No 2 (2024): Perspectives interdisciplinaires sur le développement économique; e202412[RMd] RevistaMultidisciplinar; Vol. 6 N.º 2 (2024): Perspetivas lnterdisciplinares sobre o desenvolvimento económico; e2024122184-549210.23882/emss.v1n2reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAPenghttps://revistamultidisciplinar.com/index.php/oj/article/view/216https://revistamultidisciplinar.com/index.php/oj/article/view/216/210Direitos de Autor (c) 2024 Mohamed Amine Chafik, Adda Benslimane, Faouzi Boussedrainfo:eu-repo/semantics/openAccessChafik, Mohamed Amine CHAFIKBenslimane, AddaBoussedra, Faouzi2025-04-12T08:13:21Zoai:ojs2.revistamultidisciplinar.com:article/216Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:25:03.894119Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Python for financial engineers: Mastering four moments in portfolio management
Python para engenheiros financeiros: Dominando os quatro momentos na gestão de portfólio
title Python for financial engineers: Mastering four moments in portfolio management
spellingShingle Python for financial engineers: Mastering four moments in portfolio management
Chafik, Mohamed Amine CHAFIK
Assets
Investment
Portfolio theory
Python programming
Digital Management
Ativos
Investimento
Teoria da carteira
Programação Python
Gestão digital
title_short Python for financial engineers: Mastering four moments in portfolio management
title_full Python for financial engineers: Mastering four moments in portfolio management
title_fullStr Python for financial engineers: Mastering four moments in portfolio management
title_full_unstemmed Python for financial engineers: Mastering four moments in portfolio management
title_sort Python for financial engineers: Mastering four moments in portfolio management
author Chafik, Mohamed Amine CHAFIK
author_facet Chafik, Mohamed Amine CHAFIK
Benslimane, Adda
Boussedra, Faouzi
author_role author
author2 Benslimane, Adda
Boussedra, Faouzi
author2_role author
author
dc.contributor.author.fl_str_mv Chafik, Mohamed Amine CHAFIK
Benslimane, Adda
Boussedra, Faouzi
dc.subject.por.fl_str_mv Assets
Investment
Portfolio theory
Python programming
Digital Management
Ativos
Investimento
Teoria da carteira
Programação Python
Gestão digital
topic Assets
Investment
Portfolio theory
Python programming
Digital Management
Ativos
Investimento
Teoria da carteira
Programação Python
Gestão digital
description This research conducts a comprehensive analysis aimed at optimizing portfolios comprising 14 stocks listed on the Moroccan stock exchange. Our journey culminates in the construction of portfolios that are meticulously designed to maximize returns while prudently managing risk. These portfolios are the result of an exhaustive Monte Carlo simulation that explored over three million unique portfolio combinations. The simulations take into account the skewness and kurtosis of the return distributions, offering investors a robust framework for decision-making.We collected historical data for theses 14 stocks on the Moroccan market exchange by accessing 5 years' worth of historical data from investing.com.We explore the concepts of Modern Portfolio Theory (MPT), which forms the backbone of our approach, and we employ the power of mathematics and Python programming to bring forth insights that can inform sound investment decisions.The primary focus of this study centers on the incorporation of higher statistical moments from the returns of key financial indices, with a particular emphasis on their skewness and kurtosis characteristics. To achieve this goal, various evaluative criteria derived from these statistical parameters are introduced and thoroughly investigated.Within this research framework, we confront a spectrum of optimization challenges, including the maximization of skewness, and minimization of kurtosis.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-12
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.23882/emss.24216
https://doi.org/10.23882/emss.24216
url https://doi.org/10.23882/emss.24216
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistamultidisciplinar.com/index.php/oj/article/view/216
https://revistamultidisciplinar.com/index.php/oj/article/view/216/210
dc.rights.driver.fl_str_mv Direitos de Autor (c) 2024 Mohamed Amine Chafik, Adda Benslimane, Faouzi Boussedra
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Direitos de Autor (c) 2024 Mohamed Amine Chafik, Adda Benslimane, Faouzi Boussedra
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv NMd, Núcleo Multidisciplinar
publisher.none.fl_str_mv NMd, Núcleo Multidisciplinar
dc.source.none.fl_str_mv [RMd] RevistaMultidisciplinar; Vol. 6 No. 2 (2024): lnterdisciplinary Perspectives on Economic Development; e202412
[RMd] RevistaMultidisciplinar; Vol. 6 Núm. 2 (2024): Perspectivas lnterdisciplinarias sobre el desarrollo económico; e202412
[RMd] Revue Multidisciplinaire; Vol. 6 No 2 (2024): Perspectives interdisciplinaires sur le développement économique; e202412
[RMd] RevistaMultidisciplinar; Vol. 6 N.º 2 (2024): Perspetivas lnterdisciplinares sobre o desenvolvimento económico; e202412
2184-5492
10.23882/emss.v1n2
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602678725279744