Incremental algorithm for association rule mining under dynamic threshold
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2019 |
| Outros Autores: | , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/1822/63266 |
Resumo: | Data mining is essentially applied to discover new knowledge from a database through an iterative process. The mining process may be time consuming for massive datasets. A widely used method related to knowledge discovery domain refers to association rule mining (ARM) approach, despite its shortcomings in mining large databases. As such, several approaches have been prescribed to unravel knowledge. Most of the proposed algorithms addressed data incremental issues, especially when a hefty amount of data are added to the database after the latest mining process. Three basic manipulation operations performed in a database include add, delete, and update. Any method devised in light of data incremental issues is bound to embed these three operations. The changing threshold is a long-standing problem within the data mining field. Since decision making refers to an active process, the threshold is indeed changeable. Accordingly, the present study proposes an algorithm that resolves the issue of rescanning a database that had been mined previously and allows retrieval of knowledge that satisfies several thresholds without the need to learn the process from scratch. The proposed approach displayed high accuracy in experimentation, as well as reduction in processing time by almost two-thirds of the original mining execution time. |
| id |
RCAP_5c150e41b5e76d64d12ee1402fb5fc47 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/63266 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Incremental algorithm for association rule mining under dynamic thresholddata miningknowledge extractionassociation rule miningincremental miningdynamic thresholdScience & TechnologyData mining is essentially applied to discover new knowledge from a database through an iterative process. The mining process may be time consuming for massive datasets. A widely used method related to knowledge discovery domain refers to association rule mining (ARM) approach, despite its shortcomings in mining large databases. As such, several approaches have been prescribed to unravel knowledge. Most of the proposed algorithms addressed data incremental issues, especially when a hefty amount of data are added to the database after the latest mining process. Three basic manipulation operations performed in a database include add, delete, and update. Any method devised in light of data incremental issues is bound to embed these three operations. The changing threshold is a long-standing problem within the data mining field. Since decision making refers to an active process, the threshold is indeed changeable. Accordingly, the present study proposes an algorithm that resolves the issue of rescanning a database that had been mined previously and allows retrieval of knowledge that satisfies several thresholds without the need to learn the process from scratch. The proposed approach displayed high accuracy in experimentation, as well as reduction in processing time by almost two-thirds of the original mining execution time.This research was funded by University Malaya through a postgraduate research grant (PPP) grant number PG106-2015B.Multidisciplinary Digital Publishing InstituteUniversidade do MinhoAqra, IyadAbdul Ghani, NorjihanMaple, CarstenMachado, José ManuelSohrabi Safa, Nader20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/63266engAqra, I.; Abdul Ghani, N.; Maple, C.; Machado, J.; Sohrabi Safa, N. Incremental Algorithm for Association Rule Mining under Dynamic Threshold. Appl. Sci. 2019, 9, 5398.2076-341710.3390/app9245398https://www.mdpi.com/2076-3417/9/24/5398info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:34:10Zoai:repositorium.sdum.uminho.pt:1822/63266Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:52:06.812253Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Incremental algorithm for association rule mining under dynamic threshold |
| title |
Incremental algorithm for association rule mining under dynamic threshold |
| spellingShingle |
Incremental algorithm for association rule mining under dynamic threshold Aqra, Iyad data mining knowledge extraction association rule mining incremental mining dynamic threshold Science & Technology |
| title_short |
Incremental algorithm for association rule mining under dynamic threshold |
| title_full |
Incremental algorithm for association rule mining under dynamic threshold |
| title_fullStr |
Incremental algorithm for association rule mining under dynamic threshold |
| title_full_unstemmed |
Incremental algorithm for association rule mining under dynamic threshold |
| title_sort |
Incremental algorithm for association rule mining under dynamic threshold |
| author |
Aqra, Iyad |
| author_facet |
Aqra, Iyad Abdul Ghani, Norjihan Maple, Carsten Machado, José Manuel Sohrabi Safa, Nader |
| author_role |
author |
| author2 |
Abdul Ghani, Norjihan Maple, Carsten Machado, José Manuel Sohrabi Safa, Nader |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Aqra, Iyad Abdul Ghani, Norjihan Maple, Carsten Machado, José Manuel Sohrabi Safa, Nader |
| dc.subject.por.fl_str_mv |
data mining knowledge extraction association rule mining incremental mining dynamic threshold Science & Technology |
| topic |
data mining knowledge extraction association rule mining incremental mining dynamic threshold Science & Technology |
| description |
Data mining is essentially applied to discover new knowledge from a database through an iterative process. The mining process may be time consuming for massive datasets. A widely used method related to knowledge discovery domain refers to association rule mining (ARM) approach, despite its shortcomings in mining large databases. As such, several approaches have been prescribed to unravel knowledge. Most of the proposed algorithms addressed data incremental issues, especially when a hefty amount of data are added to the database after the latest mining process. Three basic manipulation operations performed in a database include add, delete, and update. Any method devised in light of data incremental issues is bound to embed these three operations. The changing threshold is a long-standing problem within the data mining field. Since decision making refers to an active process, the threshold is indeed changeable. Accordingly, the present study proposes an algorithm that resolves the issue of rescanning a database that had been mined previously and allows retrieval of knowledge that satisfies several thresholds without the need to learn the process from scratch. The proposed approach displayed high accuracy in experimentation, as well as reduction in processing time by almost two-thirds of the original mining execution time. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/63266 |
| url |
http://hdl.handle.net/1822/63266 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Aqra, I.; Abdul Ghani, N.; Maple, C.; Machado, J.; Sohrabi Safa, N. Incremental Algorithm for Association Rule Mining under Dynamic Threshold. Appl. Sci. 2019, 9, 5398. 2076-3417 10.3390/app9245398 https://www.mdpi.com/2076-3417/9/24/5398 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594941558751232 |