Essays in empirical asset pricing
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2021 |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/143131 |
Resumo: | The first chapter of this dissertation studies value strategies across equities, industries, commodities, currencies, global government bonds, and global stock indexes. We find that these strategies are predictable in the time series by the respective value spreads. A single component of the value spreads across asset classes capture about two-thirds of the value return predictability. The second chapter analyses returns to new and old sorts, where new (old) sorts capture the return of a characteristicsorted portfolio immediately (longer) after portfolio formation. We find that there exist large alphas between old and new sorts. These alphas (i) translate into large improvements in Sharpe ratio, (ii) are not captured by benchmark asset pricing models, and (iii) are linked to the return differential between new and old stocks. The final chapter investigates how incorporating results from the financial-economics literature in the specification of a machine learning model can improve the resulting models’ forecasts. I find that the economically motivated specification predicts better cross-sectional variation in individual stock returns and more robustly predicts time-series variation in returns to value-weighted long-short portfolios and the market portfolio. |
| id |
RCAP_5a04d687e20417adf21b4ec44528af0b |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/143131 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Essays in empirical asset pricingValue PremiumValue SpreadMachine LearningNeural NetworksCharacteristic Sorted PortfoliosCross-sectional Return PredictabilityDomínio/Área Científica: Ciências Sociais: Economia e GestãoThe first chapter of this dissertation studies value strategies across equities, industries, commodities, currencies, global government bonds, and global stock indexes. We find that these strategies are predictable in the time series by the respective value spreads. A single component of the value spreads across asset classes capture about two-thirds of the value return predictability. The second chapter analyses returns to new and old sorts, where new (old) sorts capture the return of a characteristicsorted portfolio immediately (longer) after portfolio formation. We find that there exist large alphas between old and new sorts. These alphas (i) translate into large improvements in Sharpe ratio, (ii) are not captured by benchmark asset pricing models, and (iii) are linked to the return differential between new and old stocks. The final chapter investigates how incorporating results from the financial-economics literature in the specification of a machine learning model can improve the resulting models’ forecasts. I find that the economically motivated specification predicts better cross-sectional variation in individual stock returns and more robustly predicts time-series variation in returns to value-weighted long-short portfolios and the market portfolio.Boons, MartijnTamoni, AndreaPrado, MelissaRUNBaba Yara, Fahiz2022-08-19T11:35:01Z2021-10-082021-10-08T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/143131TID:101647093enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:04:27Zoai:run.unl.pt:10362/143131Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:34:56.812429Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Essays in empirical asset pricing |
| title |
Essays in empirical asset pricing |
| spellingShingle |
Essays in empirical asset pricing Baba Yara, Fahiz Value Premium Value Spread Machine Learning Neural Networks Characteristic Sorted Portfolios Cross-sectional Return Predictability Domínio/Área Científica: Ciências Sociais: Economia e Gestão |
| title_short |
Essays in empirical asset pricing |
| title_full |
Essays in empirical asset pricing |
| title_fullStr |
Essays in empirical asset pricing |
| title_full_unstemmed |
Essays in empirical asset pricing |
| title_sort |
Essays in empirical asset pricing |
| author |
Baba Yara, Fahiz |
| author_facet |
Baba Yara, Fahiz |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Boons, Martijn Tamoni, Andrea Prado, Melissa RUN |
| dc.contributor.author.fl_str_mv |
Baba Yara, Fahiz |
| dc.subject.por.fl_str_mv |
Value Premium Value Spread Machine Learning Neural Networks Characteristic Sorted Portfolios Cross-sectional Return Predictability Domínio/Área Científica: Ciências Sociais: Economia e Gestão |
| topic |
Value Premium Value Spread Machine Learning Neural Networks Characteristic Sorted Portfolios Cross-sectional Return Predictability Domínio/Área Científica: Ciências Sociais: Economia e Gestão |
| description |
The first chapter of this dissertation studies value strategies across equities, industries, commodities, currencies, global government bonds, and global stock indexes. We find that these strategies are predictable in the time series by the respective value spreads. A single component of the value spreads across asset classes capture about two-thirds of the value return predictability. The second chapter analyses returns to new and old sorts, where new (old) sorts capture the return of a characteristicsorted portfolio immediately (longer) after portfolio formation. We find that there exist large alphas between old and new sorts. These alphas (i) translate into large improvements in Sharpe ratio, (ii) are not captured by benchmark asset pricing models, and (iii) are linked to the return differential between new and old stocks. The final chapter investigates how incorporating results from the financial-economics literature in the specification of a machine learning model can improve the resulting models’ forecasts. I find that the economically motivated specification predicts better cross-sectional variation in individual stock returns and more robustly predicts time-series variation in returns to value-weighted long-short portfolios and the market portfolio. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-10-08 2021-10-08T00:00:00Z 2022-08-19T11:35:01Z |
| dc.type.driver.fl_str_mv |
doctoral thesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/143131 TID:101647093 |
| url |
http://hdl.handle.net/10362/143131 |
| identifier_str_mv |
TID:101647093 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596812586385408 |