Essays in empirical asset pricing

Detalhes bibliográficos
Autor(a) principal: Baba Yara, Fahiz
Data de Publicação: 2021
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/143131
Resumo: The first chapter of this dissertation studies value strategies across equities, industries, commodities, currencies, global government bonds, and global stock indexes. We find that these strategies are predictable in the time series by the respective value spreads. A single component of the value spreads across asset classes capture about two-thirds of the value return predictability. The second chapter analyses returns to new and old sorts, where new (old) sorts capture the return of a characteristicsorted portfolio immediately (longer) after portfolio formation. We find that there exist large alphas between old and new sorts. These alphas (i) translate into large improvements in Sharpe ratio, (ii) are not captured by benchmark asset pricing models, and (iii) are linked to the return differential between new and old stocks. The final chapter investigates how incorporating results from the financial-economics literature in the specification of a machine learning model can improve the resulting models’ forecasts. I find that the economically motivated specification predicts better cross-sectional variation in individual stock returns and more robustly predicts time-series variation in returns to value-weighted long-short portfolios and the market portfolio.
id RCAP_5a04d687e20417adf21b4ec44528af0b
oai_identifier_str oai:run.unl.pt:10362/143131
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Essays in empirical asset pricingValue PremiumValue SpreadMachine LearningNeural NetworksCharacteristic Sorted PortfoliosCross-sectional Return PredictabilityDomínio/Área Científica: Ciências Sociais: Economia e GestãoThe first chapter of this dissertation studies value strategies across equities, industries, commodities, currencies, global government bonds, and global stock indexes. We find that these strategies are predictable in the time series by the respective value spreads. A single component of the value spreads across asset classes capture about two-thirds of the value return predictability. The second chapter analyses returns to new and old sorts, where new (old) sorts capture the return of a characteristicsorted portfolio immediately (longer) after portfolio formation. We find that there exist large alphas between old and new sorts. These alphas (i) translate into large improvements in Sharpe ratio, (ii) are not captured by benchmark asset pricing models, and (iii) are linked to the return differential between new and old stocks. The final chapter investigates how incorporating results from the financial-economics literature in the specification of a machine learning model can improve the resulting models’ forecasts. I find that the economically motivated specification predicts better cross-sectional variation in individual stock returns and more robustly predicts time-series variation in returns to value-weighted long-short portfolios and the market portfolio.Boons, MartijnTamoni, AndreaPrado, MelissaRUNBaba Yara, Fahiz2022-08-19T11:35:01Z2021-10-082021-10-08T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/143131TID:101647093enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:04:27Zoai:run.unl.pt:10362/143131Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:34:56.812429Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Essays in empirical asset pricing
title Essays in empirical asset pricing
spellingShingle Essays in empirical asset pricing
Baba Yara, Fahiz
Value Premium
Value Spread
Machine Learning
Neural Networks
Characteristic Sorted Portfolios
Cross-sectional Return Predictability
Domínio/Área Científica: Ciências Sociais: Economia e Gestão
title_short Essays in empirical asset pricing
title_full Essays in empirical asset pricing
title_fullStr Essays in empirical asset pricing
title_full_unstemmed Essays in empirical asset pricing
title_sort Essays in empirical asset pricing
author Baba Yara, Fahiz
author_facet Baba Yara, Fahiz
author_role author
dc.contributor.none.fl_str_mv Boons, Martijn
Tamoni, Andrea
Prado, Melissa
RUN
dc.contributor.author.fl_str_mv Baba Yara, Fahiz
dc.subject.por.fl_str_mv Value Premium
Value Spread
Machine Learning
Neural Networks
Characteristic Sorted Portfolios
Cross-sectional Return Predictability
Domínio/Área Científica: Ciências Sociais: Economia e Gestão
topic Value Premium
Value Spread
Machine Learning
Neural Networks
Characteristic Sorted Portfolios
Cross-sectional Return Predictability
Domínio/Área Científica: Ciências Sociais: Economia e Gestão
description The first chapter of this dissertation studies value strategies across equities, industries, commodities, currencies, global government bonds, and global stock indexes. We find that these strategies are predictable in the time series by the respective value spreads. A single component of the value spreads across asset classes capture about two-thirds of the value return predictability. The second chapter analyses returns to new and old sorts, where new (old) sorts capture the return of a characteristicsorted portfolio immediately (longer) after portfolio formation. We find that there exist large alphas between old and new sorts. These alphas (i) translate into large improvements in Sharpe ratio, (ii) are not captured by benchmark asset pricing models, and (iii) are linked to the return differential between new and old stocks. The final chapter investigates how incorporating results from the financial-economics literature in the specification of a machine learning model can improve the resulting models’ forecasts. I find that the economically motivated specification predicts better cross-sectional variation in individual stock returns and more robustly predicts time-series variation in returns to value-weighted long-short portfolios and the market portfolio.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-08
2021-10-08T00:00:00Z
2022-08-19T11:35:01Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/143131
TID:101647093
url http://hdl.handle.net/10362/143131
identifier_str_mv TID:101647093
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596812586385408