Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study
Main Author: | |
---|---|
Publication Date: | 2020 |
Other Authors: | , , , |
Language: | por |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.18/7720 |
Summary: | Introduction: One ofthe greatest challenges when working with clinical datasetsisto decide howto deal withmissing values. Removing observations with any missing values priorto data analysis, a process defined aslistwise deletion, is the standard default procedure in most statistical software packages, but may lead to great loss of valuable information [1]. The use of robust imputation methods may provide accurate estimates for missing values, allowing to include these observations into the analysis. The imputation strategy to adopt depends on the amount and type of missing information, and also on the relation between variables, allying statistical expertise with clinical understanding of the data. The main purpose of this work was to compare the performance oftwo differentmethods ofimputationto overcomemissingness on dyslipidemic patients regarding statin usage. |
id |
RCAP_59b0204ea106f1b14bab46cf47e10dfa |
---|---|
oai_identifier_str |
oai:repositorio.insa.pt:10400.18/7720 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance StudyData ImputationStatinsDyslipidemiaDoenças Cardio e Cérebro-vascularesIntroduction: One ofthe greatest challenges when working with clinical datasetsisto decide howto deal withmissing values. Removing observations with any missing values priorto data analysis, a process defined aslistwise deletion, is the standard default procedure in most statistical software packages, but may lead to great loss of valuable information [1]. The use of robust imputation methods may provide accurate estimates for missing values, allowing to include these observations into the analysis. The imputation strategy to adopt depends on the amount and type of missing information, and also on the relation between variables, allying statistical expertise with clinical understanding of the data. The main purpose of this work was to compare the performance oftwo differentmethods ofimputationto overcomemissingness on dyslipidemic patients regarding statin usage.Repositório Científico do Instituto Nacional de SaúdeAlbuquerque, JoãoAlves, Ana C.Medeiros, Ana M.Bourbon, MafaldaAntunes, Marília2021-04-30T15:21:07Z2020-102020-10-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.18/7720por10.34624/jshd.v2i2.21156info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:20:51Zoai:repositorio.insa.pt:10400.18/7720Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:35:13.327458Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study |
title |
Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study |
spellingShingle |
Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study Albuquerque, João Data Imputation Statins Dyslipidemia Doenças Cardio e Cérebro-vasculares |
title_short |
Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study |
title_full |
Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study |
title_fullStr |
Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study |
title_full_unstemmed |
Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study |
title_sort |
Single versus Multiple Imputation Methods Applied to Classify Dyslipidemic Patients Concerning Statin Usage: a Comparative Performance Study |
author |
Albuquerque, João |
author_facet |
Albuquerque, João Alves, Ana C. Medeiros, Ana M. Bourbon, Mafalda Antunes, Marília |
author_role |
author |
author2 |
Alves, Ana C. Medeiros, Ana M. Bourbon, Mafalda Antunes, Marília |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Nacional de Saúde |
dc.contributor.author.fl_str_mv |
Albuquerque, João Alves, Ana C. Medeiros, Ana M. Bourbon, Mafalda Antunes, Marília |
dc.subject.por.fl_str_mv |
Data Imputation Statins Dyslipidemia Doenças Cardio e Cérebro-vasculares |
topic |
Data Imputation Statins Dyslipidemia Doenças Cardio e Cérebro-vasculares |
description |
Introduction: One ofthe greatest challenges when working with clinical datasetsisto decide howto deal withmissing values. Removing observations with any missing values priorto data analysis, a process defined aslistwise deletion, is the standard default procedure in most statistical software packages, but may lead to great loss of valuable information [1]. The use of robust imputation methods may provide accurate estimates for missing values, allowing to include these observations into the analysis. The imputation strategy to adopt depends on the amount and type of missing information, and also on the relation between variables, allying statistical expertise with clinical understanding of the data. The main purpose of this work was to compare the performance oftwo differentmethods ofimputationto overcomemissingness on dyslipidemic patients regarding statin usage. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10 2020-10-01T00:00:00Z 2021-04-30T15:21:07Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.18/7720 |
url |
http://hdl.handle.net/10400.18/7720 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.34624/jshd.v2i2.21156 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833599335132037121 |