Diabetic retinopathy grading using blended deep learning
Main Author: | |
---|---|
Publication Date: | 2023 |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10198/29195 |
Summary: | Diabetic retinopathy is a complication of diabetes that is mainly caused by the damage of the blood vessels located in the retina. Retinal screening contributes to early detection and treatment of diabetic retinopathy. DR has five stages, namely healthy, mild, moderate, severe and proliferative diabetic retinopathy. Computer-Aided diagnosis approaches are needed to allow an early de-Tection and treatment. Several automated deep learning (DL) based approaches have been proven to be a powerful tool for DR grading. However, these approaches are usually based on one DL architecture only which could produce over-fitted results. An-other identified problem is the use of imbalanced datasets. In this paper, we proposed a blended deep learning approach obtained by training several individual DL models, using a 5-fold cross-validation technique and combining their predictions in a final score. This blended model highlights each individual model where it performs best and discredits where it performs poorly, increasing the robustness of the results. The experiments were conducted on a balanced DDR dataset containing 33310 retina fundus images equally distributed for the DR grades. An explainability algorithm was also used to show the efficiency of the proposed approach in detecting DR signs. |
id |
RCAP_591f607c868d51aa5d6a265e12e111ab |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/29195 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Diabetic retinopathy grading using blended deep learningBlended deep learningDiabetic retinopathy gradingRetina fundus imagesRetinopathy levelsDiabetic retinopathy is a complication of diabetes that is mainly caused by the damage of the blood vessels located in the retina. Retinal screening contributes to early detection and treatment of diabetic retinopathy. DR has five stages, namely healthy, mild, moderate, severe and proliferative diabetic retinopathy. Computer-Aided diagnosis approaches are needed to allow an early de-Tection and treatment. Several automated deep learning (DL) based approaches have been proven to be a powerful tool for DR grading. However, these approaches are usually based on one DL architecture only which could produce over-fitted results. An-other identified problem is the use of imbalanced datasets. In this paper, we proposed a blended deep learning approach obtained by training several individual DL models, using a 5-fold cross-validation technique and combining their predictions in a final score. This blended model highlights each individual model where it performs best and discredits where it performs poorly, increasing the robustness of the results. The experiments were conducted on a balanced DDR dataset containing 33310 retina fundus images equally distributed for the DR grades. An explainability algorithm was also used to show the efficiency of the proposed approach in detecting DR signs.The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES (PIDDAC) to CeDRI (UIDB/05757/2020 and UIDP/05757/2020) and SusTEC (LA/P/0007/2021).ElsevierBiblioteca Digital do IPBMonteiro, Fernando C.2024-01-15T12:14:29Z20232023-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/29195engMonteiro, Fernando C. (2023). Diabetic retinopathy grading using blended deep learning. Procedia Computer Science. ISSN 1877-0509. 219, p. 1097-11041877-050910.1016/j.procs.2023.01.389info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:20:44Zoai:bibliotecadigital.ipb.pt:10198/29195Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T12:32:51.110684Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Diabetic retinopathy grading using blended deep learning |
title |
Diabetic retinopathy grading using blended deep learning |
spellingShingle |
Diabetic retinopathy grading using blended deep learning Monteiro, Fernando C. Blended deep learning Diabetic retinopathy grading Retina fundus images Retinopathy levels |
title_short |
Diabetic retinopathy grading using blended deep learning |
title_full |
Diabetic retinopathy grading using blended deep learning |
title_fullStr |
Diabetic retinopathy grading using blended deep learning |
title_full_unstemmed |
Diabetic retinopathy grading using blended deep learning |
title_sort |
Diabetic retinopathy grading using blended deep learning |
author |
Monteiro, Fernando C. |
author_facet |
Monteiro, Fernando C. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Monteiro, Fernando C. |
dc.subject.por.fl_str_mv |
Blended deep learning Diabetic retinopathy grading Retina fundus images Retinopathy levels |
topic |
Blended deep learning Diabetic retinopathy grading Retina fundus images Retinopathy levels |
description |
Diabetic retinopathy is a complication of diabetes that is mainly caused by the damage of the blood vessels located in the retina. Retinal screening contributes to early detection and treatment of diabetic retinopathy. DR has five stages, namely healthy, mild, moderate, severe and proliferative diabetic retinopathy. Computer-Aided diagnosis approaches are needed to allow an early de-Tection and treatment. Several automated deep learning (DL) based approaches have been proven to be a powerful tool for DR grading. However, these approaches are usually based on one DL architecture only which could produce over-fitted results. An-other identified problem is the use of imbalanced datasets. In this paper, we proposed a blended deep learning approach obtained by training several individual DL models, using a 5-fold cross-validation technique and combining their predictions in a final score. This blended model highlights each individual model where it performs best and discredits where it performs poorly, increasing the robustness of the results. The experiments were conducted on a balanced DDR dataset containing 33310 retina fundus images equally distributed for the DR grades. An explainability algorithm was also used to show the efficiency of the proposed approach in detecting DR signs. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 2023-01-01T00:00:00Z 2024-01-15T12:14:29Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/29195 |
url |
http://hdl.handle.net/10198/29195 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Monteiro, Fernando C. (2023). Diabetic retinopathy grading using blended deep learning. Procedia Computer Science. ISSN 1877-0509. 219, p. 1097-1104 1877-0509 10.1016/j.procs.2023.01.389 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833592913716576256 |