Phase equilibria in electrolyte systems

Detalhes bibliográficos
Autor(a) principal: Pinho, Simão
Data de Publicação: 2000
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10198/1478
Resumo: The main objectives of this work are the study of solid-liquid equilibrium of salts in pure and mixed solvents, and of biomolecules, such as amino acids and peptides, in water. The correlation and prediction of properties for mixtures containing charged electric species, the electrolytes, is of great relevance for the chemical industry. A brief discussion about the whole interest of this work and the need of concentrating efforts to develop accurate models for electrolyte systems is initially focused. The fundamental concepts of electrolyte thermodynamics and industrial examples where electrolytes play an important role are given. The available different models to correlate and/or predict properties and phase equilibria for this kind of mixtures are reviewed and compared. An isothermal analytical method, which has been implemented to measure salt solubilities, is described in detail. The experimental solubilities obtained for NaCl, KCl, NaBr and KBr, in the pure solvents water, methanol, ethanol and in the mixed solvents water/methanol, water/ethanol and methanol/ethanol in the temperature range between 25 oC and 80 oC are given. The new experimental data is used together with additional information published by other authors, concerning solid-liquid equilibrium of salts in pure and mixed solvents and osmotic coefficients in pure solvents, in order to establish an extensive and reliable database. This is adopted for the development of consistent thermodynamic models. Two UNIQUAC based models are suggested: the UNIQUAC + Pitzer-Debye-Hückel model, and the UNIQUAC model with linear temperature dependent solvent/salt parameters. A new developed approach for correlating salt solubilities, based on the symmetric convention of normalization of the activity coefficients and on the mole fraction concentration scale on ionized basis is presented. In this way, it is possible the direct access to the salt solubility product in terms of its calorimetric properties such as the melting temperature, enthalpy of fusion and heat capacity change. The capabilities of these models for the correlation and prediction of solid-liquid equilibrium and other thermodynamic properties are discussed. The results indicate that this procedure and these models are satisfactory for solid-liquid equilibrium calculations. The work on weak electrolytes consists of the development of a new group-contribution method. This includes two terms: the UNIFAC model to account for the short-range interaction forces, and a Debye-Hückel expression for the long-range forces. New UNIFAC groups have been assigned to describe the amino acids and peptides studied, and the chemical equilibrium is taken into account simultaneously with the physical equilibrium. Using this approach, the temperature and pH effects on the solubilities of amino acids in aqueous solutions are taken into consideration. This model predicts very successfully the pH influence on the solubilities of amino acids and therefore may be used for engineering purposes.
id RCAP_57e3301cbbb97a4b840c3554cada1b35
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/1478
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Phase equilibria in electrolyte systemsElectrolytePhase equilibriaThe main objectives of this work are the study of solid-liquid equilibrium of salts in pure and mixed solvents, and of biomolecules, such as amino acids and peptides, in water. The correlation and prediction of properties for mixtures containing charged electric species, the electrolytes, is of great relevance for the chemical industry. A brief discussion about the whole interest of this work and the need of concentrating efforts to develop accurate models for electrolyte systems is initially focused. The fundamental concepts of electrolyte thermodynamics and industrial examples where electrolytes play an important role are given. The available different models to correlate and/or predict properties and phase equilibria for this kind of mixtures are reviewed and compared. An isothermal analytical method, which has been implemented to measure salt solubilities, is described in detail. The experimental solubilities obtained for NaCl, KCl, NaBr and KBr, in the pure solvents water, methanol, ethanol and in the mixed solvents water/methanol, water/ethanol and methanol/ethanol in the temperature range between 25 oC and 80 oC are given. The new experimental data is used together with additional information published by other authors, concerning solid-liquid equilibrium of salts in pure and mixed solvents and osmotic coefficients in pure solvents, in order to establish an extensive and reliable database. This is adopted for the development of consistent thermodynamic models. Two UNIQUAC based models are suggested: the UNIQUAC + Pitzer-Debye-Hückel model, and the UNIQUAC model with linear temperature dependent solvent/salt parameters. A new developed approach for correlating salt solubilities, based on the symmetric convention of normalization of the activity coefficients and on the mole fraction concentration scale on ionized basis is presented. In this way, it is possible the direct access to the salt solubility product in terms of its calorimetric properties such as the melting temperature, enthalpy of fusion and heat capacity change. The capabilities of these models for the correlation and prediction of solid-liquid equilibrium and other thermodynamic properties are discussed. The results indicate that this procedure and these models are satisfactory for solid-liquid equilibrium calculations. The work on weak electrolytes consists of the development of a new group-contribution method. This includes two terms: the UNIFAC model to account for the short-range interaction forces, and a Debye-Hückel expression for the long-range forces. New UNIFAC groups have been assigned to describe the amino acids and peptides studied, and the chemical equilibrium is taken into account simultaneously with the physical equilibrium. Using this approach, the temperature and pH effects on the solubilities of amino acids in aqueous solutions are taken into consideration. This model predicts very successfully the pH influence on the solubilities of amino acids and therefore may be used for engineering purposes.Universidade do Porto, Faculdade de EngenhariaBiblioteca Digital do IPBPinho, Simão2010-01-26T16:57:45Z20002000-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/1478TID:101084234engPinho, Simão (2000). Phase equilibria in electrolyte systems. Porto: FEUP. Tese de Doutoramento em Engenharia Químicainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T11:54:42Zoai:bibliotecadigital.ipb.pt:10198/1478Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:16:02.367168Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Phase equilibria in electrolyte systems
title Phase equilibria in electrolyte systems
spellingShingle Phase equilibria in electrolyte systems
Pinho, Simão
Electrolyte
Phase equilibria
title_short Phase equilibria in electrolyte systems
title_full Phase equilibria in electrolyte systems
title_fullStr Phase equilibria in electrolyte systems
title_full_unstemmed Phase equilibria in electrolyte systems
title_sort Phase equilibria in electrolyte systems
author Pinho, Simão
author_facet Pinho, Simão
author_role author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Pinho, Simão
dc.subject.por.fl_str_mv Electrolyte
Phase equilibria
topic Electrolyte
Phase equilibria
description The main objectives of this work are the study of solid-liquid equilibrium of salts in pure and mixed solvents, and of biomolecules, such as amino acids and peptides, in water. The correlation and prediction of properties for mixtures containing charged electric species, the electrolytes, is of great relevance for the chemical industry. A brief discussion about the whole interest of this work and the need of concentrating efforts to develop accurate models for electrolyte systems is initially focused. The fundamental concepts of electrolyte thermodynamics and industrial examples where electrolytes play an important role are given. The available different models to correlate and/or predict properties and phase equilibria for this kind of mixtures are reviewed and compared. An isothermal analytical method, which has been implemented to measure salt solubilities, is described in detail. The experimental solubilities obtained for NaCl, KCl, NaBr and KBr, in the pure solvents water, methanol, ethanol and in the mixed solvents water/methanol, water/ethanol and methanol/ethanol in the temperature range between 25 oC and 80 oC are given. The new experimental data is used together with additional information published by other authors, concerning solid-liquid equilibrium of salts in pure and mixed solvents and osmotic coefficients in pure solvents, in order to establish an extensive and reliable database. This is adopted for the development of consistent thermodynamic models. Two UNIQUAC based models are suggested: the UNIQUAC + Pitzer-Debye-Hückel model, and the UNIQUAC model with linear temperature dependent solvent/salt parameters. A new developed approach for correlating salt solubilities, based on the symmetric convention of normalization of the activity coefficients and on the mole fraction concentration scale on ionized basis is presented. In this way, it is possible the direct access to the salt solubility product in terms of its calorimetric properties such as the melting temperature, enthalpy of fusion and heat capacity change. The capabilities of these models for the correlation and prediction of solid-liquid equilibrium and other thermodynamic properties are discussed. The results indicate that this procedure and these models are satisfactory for solid-liquid equilibrium calculations. The work on weak electrolytes consists of the development of a new group-contribution method. This includes two terms: the UNIFAC model to account for the short-range interaction forces, and a Debye-Hückel expression for the long-range forces. New UNIFAC groups have been assigned to describe the amino acids and peptides studied, and the chemical equilibrium is taken into account simultaneously with the physical equilibrium. Using this approach, the temperature and pH effects on the solubilities of amino acids in aqueous solutions are taken into consideration. This model predicts very successfully the pH influence on the solubilities of amino acids and therefore may be used for engineering purposes.
publishDate 2000
dc.date.none.fl_str_mv 2000
2000-01-01T00:00:00Z
2010-01-26T16:57:45Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/1478
TID:101084234
url http://hdl.handle.net/10198/1478
identifier_str_mv TID:101084234
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pinho, Simão (2000). Phase equilibria in electrolyte systems. Porto: FEUP. Tese de Doutoramento em Engenharia Química
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Porto, Faculdade de Engenharia
publisher.none.fl_str_mv Universidade do Porto, Faculdade de Engenharia
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833591747275390976