Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2017 |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/1822/46289 |
Resumo: | In this paper we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations. |
| id |
RCAP_57c3323cfb5f1f6caacc6bc2df2279bc |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/46289 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delaysNeural networksUnbounded coefficientsBounded coefficientsInfinite distributed delaysBoundednessGlobal convergenceAsymptotic systemsCiências Naturais::MatemáticasScience & TechnologyIn this paper we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.The paper was supported by the Research Centre of Mathematics of the University of Minho with the Portuguese Funds from the "Fundacao para a Ciencia e a Tecnologia", through the Project PEstOE/MAT/UI0013/2014. The author thanks the referee for valuable comments.info:eu-repo/semantics/publishedVersionSpringer VerlagUniversidade do MinhoOliveira, José J.2017-02-252017-02-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/46289eng0938-89741432-146710.1007/s00332-017-9371-8https://link.springer.com/article/10.1007/s00332-017-9371-8info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:36:53Zoai:repositorium.sdum.uminho.pt:1822/46289Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:59:00.744820Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays |
| title |
Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays |
| spellingShingle |
Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays Oliveira, José J. Neural networks Unbounded coefficients Bounded coefficients Infinite distributed delays Boundedness Global convergence Asymptotic systems Ciências Naturais::Matemáticas Science & Technology |
| title_short |
Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays |
| title_full |
Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays |
| title_fullStr |
Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays |
| title_full_unstemmed |
Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays |
| title_sort |
Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays |
| author |
Oliveira, José J. |
| author_facet |
Oliveira, José J. |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Oliveira, José J. |
| dc.subject.por.fl_str_mv |
Neural networks Unbounded coefficients Bounded coefficients Infinite distributed delays Boundedness Global convergence Asymptotic systems Ciências Naturais::Matemáticas Science & Technology |
| topic |
Neural networks Unbounded coefficients Bounded coefficients Infinite distributed delays Boundedness Global convergence Asymptotic systems Ciências Naturais::Matemáticas Science & Technology |
| description |
In this paper we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-02-25 2017-02-25T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/46289 |
| url |
http://hdl.handle.net/1822/46289 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
0938-8974 1432-1467 10.1007/s00332-017-9371-8 https://link.springer.com/article/10.1007/s00332-017-9371-8 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Verlag |
| publisher.none.fl_str_mv |
Springer Verlag |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595659597381632 |