Exportação concluída — 

Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays

Detalhes bibliográficos
Autor(a) principal: Oliveira, José J.
Data de Publicação: 2017
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/1822/46289
Resumo: In this paper we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.
id RCAP_57c3323cfb5f1f6caacc6bc2df2279bc
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/46289
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delaysNeural networksUnbounded coefficientsBounded coefficientsInfinite distributed delaysBoundednessGlobal convergenceAsymptotic systemsCiências Naturais::MatemáticasScience & TechnologyIn this paper we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.The paper was supported by the Research Centre of Mathematics of the University of Minho with the Portuguese Funds from the "Fundacao para a Ciencia e a Tecnologia", through the Project PEstOE/MAT/UI0013/2014. The author thanks the referee for valuable comments.info:eu-repo/semantics/publishedVersionSpringer VerlagUniversidade do MinhoOliveira, José J.2017-02-252017-02-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/46289eng0938-89741432-146710.1007/s00332-017-9371-8https://link.springer.com/article/10.1007/s00332-017-9371-8info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:36:53Zoai:repositorium.sdum.uminho.pt:1822/46289Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:59:00.744820Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays
title Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays
spellingShingle Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays
Oliveira, José J.
Neural networks
Unbounded coefficients
Bounded coefficients
Infinite distributed delays
Boundedness
Global convergence
Asymptotic systems
Ciências Naturais::Matemáticas
Science & Technology
title_short Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays
title_full Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays
title_fullStr Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays
title_full_unstemmed Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays
title_sort Convergence of asymptotic systems of non-autonomous neural network models with infinite distributed delays
author Oliveira, José J.
author_facet Oliveira, José J.
author_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Oliveira, José J.
dc.subject.por.fl_str_mv Neural networks
Unbounded coefficients
Bounded coefficients
Infinite distributed delays
Boundedness
Global convergence
Asymptotic systems
Ciências Naturais::Matemáticas
Science & Technology
topic Neural networks
Unbounded coefficients
Bounded coefficients
Infinite distributed delays
Boundedness
Global convergence
Asymptotic systems
Ciências Naturais::Matemáticas
Science & Technology
description In this paper we investigate the global convergence of solutions of non-autonomous Hopfield neural network models with discrete time-varying delays, infinite distributed delays, and possible unbounded coefficient functions. Instead of using Lyapunov functionals, we explore intrinsic features between the non-autonomous systems and their asymptotic systems to ensure the boundedness and global convergence of the solutions of the studied models. Our results are new and complement known results in the literature. The theoretical analysis is illustrated with some examples and numerical simulations.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-25
2017-02-25T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/46289
url http://hdl.handle.net/1822/46289
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0938-8974
1432-1467
10.1007/s00332-017-9371-8
https://link.springer.com/article/10.1007/s00332-017-9371-8
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595659597381632