SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology

Bibliographic Details
Main Author: Vasconcelos, Lia
Publication Date: 2022
Other Authors: Dias, L.G., Leite, Ana, Ferreira, Iasmin da Silva, Pereira, Etelvina, Silva, Severiano, Rodrigues, Sandra, Teixeira, Alfredo
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/25363
Summary: This study evaluates the ability of the near infrared reflectance spectroscopy (NIRS) to estimate the aW, protein, moisture, ash, fat, collagen, texture, pigments, and WHC in the Longissimus thoracis et lumborum (LTL) of Bisaro pig. Samples (n = 40) of the LTL muscle were minced and scanned in an FT-NIR MasterTM N500 (BuCHI) over a NIR spectral range of 4000-10,000 cm(-1) with a resolution of 4 cm(-1). The PLS and SVM regression models were developed using the spectra's math treatment, DV1, DV2, MSC, SNV, and SMT (n = 40). PLS models showed acceptable fits (estimation models with RMSE <= 0.5% and R-2 >= 0.95) except for the RT variable (RMSE of 0.891% and R-2 of 0.748). The SVM models presented better overall prediction results than those obtained by PLS, where only the variables pigments and WHC presented estimation models (respectively: RMSE of 0.069 and 0.472%; R-2 of 0.993 and 0.996; slope of 0.985 +/- 0.006 and 0.925 +/- 0.006). The results showed NIRs capacity to predict the meat quality traits of Bisaro pig breed in order to guarantee its characterization.
id RCAP_55aad2f7444b52a76972bcc91e330936
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/25363
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling SVM regression to assess meat characteristics of bisaro pig loins using nirs methodologyNIRSVM modelMeat qualityBísaro pigLongissimus thoracis et lumborumThis study evaluates the ability of the near infrared reflectance spectroscopy (NIRS) to estimate the aW, protein, moisture, ash, fat, collagen, texture, pigments, and WHC in the Longissimus thoracis et lumborum (LTL) of Bisaro pig. Samples (n = 40) of the LTL muscle were minced and scanned in an FT-NIR MasterTM N500 (BuCHI) over a NIR spectral range of 4000-10,000 cm(-1) with a resolution of 4 cm(-1). The PLS and SVM regression models were developed using the spectra's math treatment, DV1, DV2, MSC, SNV, and SMT (n = 40). PLS models showed acceptable fits (estimation models with RMSE <= 0.5% and R-2 >= 0.95) except for the RT variable (RMSE of 0.891% and R-2 of 0.748). The SVM models presented better overall prediction results than those obtained by PLS, where only the variables pigments and WHC presented estimation models (respectively: RMSE of 0.069 and 0.472%; R-2 of 0.993 and 0.996; slope of 0.985 +/- 0.006 and 0.925 +/- 0.006). The results showed NIRs capacity to predict the meat quality traits of Bisaro pig breed in order to guarantee its characterization.MDPIBiblioteca Digital do IPBVasconcelos, LiaDias, L.G.Leite, AnaFerreira, Iasmin da SilvaPereira, EtelvinaSilva, SeverianoRodrigues, SandraTeixeira, Alfredo2022-04-05T15:43:30Z20232023-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10198/25363engVasconcelos, Lia Inês Machado; Dias, L.G.; Leite, Ana; Ferreira, Iasmin da Silva; Pereira, Etelvina; Silva, Severiano; Rodrigues, Sandra; Teixeira, Alfredo (2023). SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology. Foods. eISSN 2304-8158. 12:3, p. 1-1510.3390/foods120304702304-8158info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:16:08Zoai:bibliotecadigital.ipb.pt:10198/25363Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:43:33.781973Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology
title SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology
spellingShingle SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology
Vasconcelos, Lia
NIR
SVM model
Meat quality
Bísaro pig
Longissimus thoracis et lumborum
title_short SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology
title_full SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology
title_fullStr SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology
title_full_unstemmed SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology
title_sort SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology
author Vasconcelos, Lia
author_facet Vasconcelos, Lia
Dias, L.G.
Leite, Ana
Ferreira, Iasmin da Silva
Pereira, Etelvina
Silva, Severiano
Rodrigues, Sandra
Teixeira, Alfredo
author_role author
author2 Dias, L.G.
Leite, Ana
Ferreira, Iasmin da Silva
Pereira, Etelvina
Silva, Severiano
Rodrigues, Sandra
Teixeira, Alfredo
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Vasconcelos, Lia
Dias, L.G.
Leite, Ana
Ferreira, Iasmin da Silva
Pereira, Etelvina
Silva, Severiano
Rodrigues, Sandra
Teixeira, Alfredo
dc.subject.por.fl_str_mv NIR
SVM model
Meat quality
Bísaro pig
Longissimus thoracis et lumborum
topic NIR
SVM model
Meat quality
Bísaro pig
Longissimus thoracis et lumborum
description This study evaluates the ability of the near infrared reflectance spectroscopy (NIRS) to estimate the aW, protein, moisture, ash, fat, collagen, texture, pigments, and WHC in the Longissimus thoracis et lumborum (LTL) of Bisaro pig. Samples (n = 40) of the LTL muscle were minced and scanned in an FT-NIR MasterTM N500 (BuCHI) over a NIR spectral range of 4000-10,000 cm(-1) with a resolution of 4 cm(-1). The PLS and SVM regression models were developed using the spectra's math treatment, DV1, DV2, MSC, SNV, and SMT (n = 40). PLS models showed acceptable fits (estimation models with RMSE <= 0.5% and R-2 >= 0.95) except for the RT variable (RMSE of 0.891% and R-2 of 0.748). The SVM models presented better overall prediction results than those obtained by PLS, where only the variables pigments and WHC presented estimation models (respectively: RMSE of 0.069 and 0.472%; R-2 of 0.993 and 0.996; slope of 0.985 +/- 0.006 and 0.925 +/- 0.006). The results showed NIRs capacity to predict the meat quality traits of Bisaro pig breed in order to guarantee its characterization.
publishDate 2022
dc.date.none.fl_str_mv 2022-04-05T15:43:30Z
2023
2023-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/25363
url http://hdl.handle.net/10198/25363
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Vasconcelos, Lia Inês Machado; Dias, L.G.; Leite, Ana; Ferreira, Iasmin da Silva; Pereira, Etelvina; Silva, Severiano; Rodrigues, Sandra; Teixeira, Alfredo (2023). SVM regression to assess meat characteristics of bisaro pig loins using nirs methodology. Foods. eISSN 2304-8158. 12:3, p. 1-15
10.3390/foods12030470
2304-8158
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592183166337024