SLIM_GSGP
Main Author: | |
---|---|
Publication Date: | 2024 |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/172918 |
Summary: | Vanneschi, L. (2024). SLIM_GSGP: The Non-bloating Geometric Semantic Genetic Programming. In M. Giacobini, B. Xue, & L. Manzoni (Eds.), Genetic Programming: 27th European Conference, EuroGP 2024, Held as Part of EvoStar 2024 Aberystwyth, UK, April 3–5, 2024 Proceedings (pp. 125-141). (Lecture Notes in Computer Science; Vol. 14631). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-56957-9_8 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS |
id |
RCAP_532d3837c29df1c75434c7192b954b0e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/172918 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
SLIM_GSGPThe Non-bloating Geometric Semantic Genetic ProgrammingGenetic ProgrammingGeometric Semantic Genetic ProgrammingInflate and Deflate MutationsModel InterpretabilityTheoretical Computer ScienceComputer Science(all)Vanneschi, L. (2024). SLIM_GSGP: The Non-bloating Geometric Semantic Genetic Programming. In M. Giacobini, B. Xue, & L. Manzoni (Eds.), Genetic Programming: 27th European Conference, EuroGP 2024, Held as Part of EvoStar 2024 Aberystwyth, UK, April 3–5, 2024 Proceedings (pp. 125-141). (Lecture Notes in Computer Science; Vol. 14631). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-56957-9_8 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMSGeometric semantic genetic programming (GSGP) is a successful variant of genetic programming (GP), able to induce a unimodal error surface for all supervised learning problems. However, a limitation of GSGP is its tendency to generate offspring larger than their parents, resulting in continually growing program sizes. This leads to the creation of models that are often too complex for human comprehension. This paper presents a novel GSGP variant, the Semantic Learning algorithm with Inflate and deflate Mutations (SLIM_GSGP). SLIM_GSGP retains the essential theoretical characteristics of traditional GSGP, including the induction of a unimodal error surface and introduces a novel geometric semantic mutation, the deflate mutation, which generates smaller offspring than its parents. The study introduces four SLIM_GSGP variants and presents experimental results demonstrating that, across six symbolic regression test problems, SLIM_GSGP consistently evolves models with equal or superior performance on unseen data compared to traditional GSGP and standard GP. These SLIM_GSGP models are significantly smaller than those produced by traditional GSGP and are either smaller or of comparable size to standard GP models. Notably, the compactness of SLIM_GSGP models allows for human interpretation.Springer Nature Switzerland AGNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNVanneschi, Leonardo2025-03-29T01:32:49Z2024-03-282024-03-28T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion17application/pdfhttp://hdl.handle.net/10362/172918eng978-3-031-56956-20302-9743PURE: 87159507https://doi.org/10.1007/978-3-031-56957-9_8info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-31T01:53:45Zoai:run.unl.pt:10362/172918Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:55:27.888682Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
SLIM_GSGP The Non-bloating Geometric Semantic Genetic Programming |
title |
SLIM_GSGP |
spellingShingle |
SLIM_GSGP Vanneschi, Leonardo Genetic Programming Geometric Semantic Genetic Programming Inflate and Deflate Mutations Model Interpretability Theoretical Computer Science Computer Science(all) |
title_short |
SLIM_GSGP |
title_full |
SLIM_GSGP |
title_fullStr |
SLIM_GSGP |
title_full_unstemmed |
SLIM_GSGP |
title_sort |
SLIM_GSGP |
author |
Vanneschi, Leonardo |
author_facet |
Vanneschi, Leonardo |
author_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Vanneschi, Leonardo |
dc.subject.por.fl_str_mv |
Genetic Programming Geometric Semantic Genetic Programming Inflate and Deflate Mutations Model Interpretability Theoretical Computer Science Computer Science(all) |
topic |
Genetic Programming Geometric Semantic Genetic Programming Inflate and Deflate Mutations Model Interpretability Theoretical Computer Science Computer Science(all) |
description |
Vanneschi, L. (2024). SLIM_GSGP: The Non-bloating Geometric Semantic Genetic Programming. In M. Giacobini, B. Xue, & L. Manzoni (Eds.), Genetic Programming: 27th European Conference, EuroGP 2024, Held as Part of EvoStar 2024 Aberystwyth, UK, April 3–5, 2024 Proceedings (pp. 125-141). (Lecture Notes in Computer Science; Vol. 14631). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-031-56957-9_8 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-28 2024-03-28T00:00:00Z 2025-03-29T01:32:49Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/172918 |
url |
http://hdl.handle.net/10362/172918 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-031-56956-2 0302-9743 PURE: 87159507 https://doi.org/10.1007/978-3-031-56957-9_8 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
17 application/pdf |
dc.publisher.none.fl_str_mv |
Springer Nature Switzerland AG |
publisher.none.fl_str_mv |
Springer Nature Switzerland AG |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597757309321216 |