Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables
Main Author: | |
---|---|
Publication Date: | 2015 |
Other Authors: | , , , , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/1822/39279 |
Summary: | Predicting barotrauma occurrence in intensive care patients is a difficult task. Data Mining modelling can contribute significantly to the identification of patients who will suffer barotrauma. This can be achieved by grouping patient data, considering a set of variables collected from ventilators directly related with barotrauma, and identifying similarities among them. For clustering have been considered k-means and k-medoids algortihms (Partitioning Around Medoids). The best model induced presented a Davies-Bouldin Index of 0.64. This model identifies the variables that have more similarity among the variables monitored by the ventilators and the occurrence of barotrauma. |
id |
RCAP_511d2b5d4e11d76f856376cc05c47db4 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/39279 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Clustering barotrauma patients in ICU–A data mining based approach using ventilator variablesBarotraumaPlateau pressureIntensive medicineData miningClusteringSimilarityCorrelationScience & TechnologyPredicting barotrauma occurrence in intensive care patients is a difficult task. Data Mining modelling can contribute significantly to the identification of patients who will suffer barotrauma. This can be achieved by grouping patient data, considering a set of variables collected from ventilators directly related with barotrauma, and identifying similarities among them. For clustering have been considered k-means and k-medoids algortihms (Partitioning Around Medoids). The best model induced presented a Davies-Bouldin Index of 0.64. This model identifies the variables that have more similarity among the variables monitored by the ventilators and the occurrence of barotrauma.SpringerUniversidade do MinhoOliveira, Sérgio Manuel CostaPortela, FilipeSantos, Manuel FilipeMachado, JoséAbelha, AntónioSilva, ÁlvaroRua, Fernando20152015-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/39279eng978-3-319-23484-70302-974310.1007/978-3-319-23485-4_13http://link.springer.com/chapter/10.1007%2F978-3-319-23485-4_13info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T07:35:46Zoai:repositorium.sdum.uminho.pt:1822/39279Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:32:47.539444Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables |
title |
Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables |
spellingShingle |
Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables Oliveira, Sérgio Manuel Costa Barotrauma Plateau pressure Intensive medicine Data mining Clustering Similarity Correlation Science & Technology |
title_short |
Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables |
title_full |
Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables |
title_fullStr |
Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables |
title_full_unstemmed |
Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables |
title_sort |
Clustering barotrauma patients in ICU–A data mining based approach using ventilator variables |
author |
Oliveira, Sérgio Manuel Costa |
author_facet |
Oliveira, Sérgio Manuel Costa Portela, Filipe Santos, Manuel Filipe Machado, José Abelha, António Silva, Álvaro Rua, Fernando |
author_role |
author |
author2 |
Portela, Filipe Santos, Manuel Filipe Machado, José Abelha, António Silva, Álvaro Rua, Fernando |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Oliveira, Sérgio Manuel Costa Portela, Filipe Santos, Manuel Filipe Machado, José Abelha, António Silva, Álvaro Rua, Fernando |
dc.subject.por.fl_str_mv |
Barotrauma Plateau pressure Intensive medicine Data mining Clustering Similarity Correlation Science & Technology |
topic |
Barotrauma Plateau pressure Intensive medicine Data mining Clustering Similarity Correlation Science & Technology |
description |
Predicting barotrauma occurrence in intensive care patients is a difficult task. Data Mining modelling can contribute significantly to the identification of patients who will suffer barotrauma. This can be achieved by grouping patient data, considering a set of variables collected from ventilators directly related with barotrauma, and identifying similarities among them. For clustering have been considered k-means and k-medoids algortihms (Partitioning Around Medoids). The best model induced presented a Davies-Bouldin Index of 0.64. This model identifies the variables that have more similarity among the variables monitored by the ventilators and the occurrence of barotrauma. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 2015-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/39279 |
url |
http://hdl.handle.net/1822/39279 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-3-319-23484-7 0302-9743 10.1007/978-3-319-23485-4_13 http://link.springer.com/chapter/10.1007%2F978-3-319-23485-4_13 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596013866123264 |