Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodland
Main Author: | |
---|---|
Publication Date: | 2007 |
Other Authors: | , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.11/950 |
Summary: | In closed canopy forests the energy absorbed by the trees can be adequately estimated solely from the vertical radiation fluxes. However, in isolated or widely spaced trees this approach is no longer valid and radiation fluxes in all directions must be accounted for. An adequate estimate of the tree available energy is critical to model and calculate both interception losses and transpiration. Within a study where interception loss in a sparse evergreen oak woodland (montado) of Southern Portugal is evaluated and mod¬elled, the net amount of radiant energy absorbed by an isolated holm oak tree (Q) was measured under different radiation conditions. The measuring and calculating proce¬dure was based on the integration of the flux density of net radiation (Rn) at different points of a cylindrical surface (S) enclosing the tree crown. A set of 4 net radiome¬ters were used: one at a fixed position, on the top of the crown, and the remaining 3 mounted on a standing structure that could be moved around the tree to measure Rn fluxes through the inferior and lateral sides. Measurements of Q were made for 8 dif¬ferent days, during the first 3 months of 2006. Night time measurements of Rn were also done, but with the net radiometers at fixed positions around the tree. The meteoro¬logical conditions during the measurements included clear sky and cloudy days, some of which with light rain. Net radiation at the top of the crown accounted for about 72 % of the total energy absorbed by the tree, and this is reflected by the good linear fit between Q and Rn above the crown. Meteorological conditions seem to have some influence on this relationship, as suggested by the differences on the adjusted linear models when total, clear sky, cloudy or rainy data sets were used. The occurrence of rain tends to cause a slight increase in Q in comparison to dry conditions, for identical levels of Rn. Q also shows a strong linear response to solar radiation (Rs), given the dependence of net radiation upon short wave radiation. The same happens with the component of Q received by the top crown surface. However, energy absorbed lat¬erally is much less dependent on Rs, and the inferior component of Q is completely independent of solar radiation. Under conditions when rainfall interception is most likely to occur, i.e. cloudy/rainy days, the daily time-course of Q follows closely those of Rs and Rn, with a maximum of only 75 W m-2 (expressed per unit of leaf area). Similar maximum daily values were observed in other studies with different species but under similar weather conditions. During the night, net radiation should not have a significant spatial variability and Rn around the canopy should be relatively homo¬geneous. Accordingly, night time estimates of Q were obtained from measurements of Rn at fixed positions, which were considered representative of the Rn fluxes around the tree. |
id |
RCAP_4f79a51eb14742205d6a2759ee70fafc |
---|---|
oai_identifier_str |
oai:repositorio.ipcb.pt:10400.11/950 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodlandQuercus rotundifoliaRadiationIn closed canopy forests the energy absorbed by the trees can be adequately estimated solely from the vertical radiation fluxes. However, in isolated or widely spaced trees this approach is no longer valid and radiation fluxes in all directions must be accounted for. An adequate estimate of the tree available energy is critical to model and calculate both interception losses and transpiration. Within a study where interception loss in a sparse evergreen oak woodland (montado) of Southern Portugal is evaluated and mod¬elled, the net amount of radiant energy absorbed by an isolated holm oak tree (Q) was measured under different radiation conditions. The measuring and calculating proce¬dure was based on the integration of the flux density of net radiation (Rn) at different points of a cylindrical surface (S) enclosing the tree crown. A set of 4 net radiome¬ters were used: one at a fixed position, on the top of the crown, and the remaining 3 mounted on a standing structure that could be moved around the tree to measure Rn fluxes through the inferior and lateral sides. Measurements of Q were made for 8 dif¬ferent days, during the first 3 months of 2006. Night time measurements of Rn were also done, but with the net radiometers at fixed positions around the tree. The meteoro¬logical conditions during the measurements included clear sky and cloudy days, some of which with light rain. Net radiation at the top of the crown accounted for about 72 % of the total energy absorbed by the tree, and this is reflected by the good linear fit between Q and Rn above the crown. Meteorological conditions seem to have some influence on this relationship, as suggested by the differences on the adjusted linear models when total, clear sky, cloudy or rainy data sets were used. The occurrence of rain tends to cause a slight increase in Q in comparison to dry conditions, for identical levels of Rn. Q also shows a strong linear response to solar radiation (Rs), given the dependence of net radiation upon short wave radiation. The same happens with the component of Q received by the top crown surface. However, energy absorbed lat¬erally is much less dependent on Rs, and the inferior component of Q is completely independent of solar radiation. Under conditions when rainfall interception is most likely to occur, i.e. cloudy/rainy days, the daily time-course of Q follows closely those of Rs and Rn, with a maximum of only 75 W m-2 (expressed per unit of leaf area). Similar maximum daily values were observed in other studies with different species but under similar weather conditions. During the night, net radiation should not have a significant spatial variability and Rn around the canopy should be relatively homo¬geneous. Accordingly, night time estimates of Q were obtained from measurements of Rn at fixed positions, which were considered representative of the Rn fluxes around the tree.EGURepositório Científico do Instituto Politécnico de Castelo BrancoPereira, Fernando LeiteValente, FernandaDavid, Jorge Soares2011-11-16T18:05:34Z20072007-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.11/950enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:21:18Zoai:repositorio.ipcb.pt:10400.11/950Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:35:29.048590Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodland |
title |
Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodland |
spellingShingle |
Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodland Pereira, Fernando Leite Quercus rotundifolia Radiation |
title_short |
Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodland |
title_full |
Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodland |
title_fullStr |
Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodland |
title_full_unstemmed |
Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodland |
title_sort |
Radiation balance of an isolated holm oak tree (Quercus rotundifolia Lam.) in a mediterranean savannah-type woodland |
author |
Pereira, Fernando Leite |
author_facet |
Pereira, Fernando Leite Valente, Fernanda David, Jorge Soares |
author_role |
author |
author2 |
Valente, Fernanda David, Jorge Soares |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico de Castelo Branco |
dc.contributor.author.fl_str_mv |
Pereira, Fernando Leite Valente, Fernanda David, Jorge Soares |
dc.subject.por.fl_str_mv |
Quercus rotundifolia Radiation |
topic |
Quercus rotundifolia Radiation |
description |
In closed canopy forests the energy absorbed by the trees can be adequately estimated solely from the vertical radiation fluxes. However, in isolated or widely spaced trees this approach is no longer valid and radiation fluxes in all directions must be accounted for. An adequate estimate of the tree available energy is critical to model and calculate both interception losses and transpiration. Within a study where interception loss in a sparse evergreen oak woodland (montado) of Southern Portugal is evaluated and mod¬elled, the net amount of radiant energy absorbed by an isolated holm oak tree (Q) was measured under different radiation conditions. The measuring and calculating proce¬dure was based on the integration of the flux density of net radiation (Rn) at different points of a cylindrical surface (S) enclosing the tree crown. A set of 4 net radiome¬ters were used: one at a fixed position, on the top of the crown, and the remaining 3 mounted on a standing structure that could be moved around the tree to measure Rn fluxes through the inferior and lateral sides. Measurements of Q were made for 8 dif¬ferent days, during the first 3 months of 2006. Night time measurements of Rn were also done, but with the net radiometers at fixed positions around the tree. The meteoro¬logical conditions during the measurements included clear sky and cloudy days, some of which with light rain. Net radiation at the top of the crown accounted for about 72 % of the total energy absorbed by the tree, and this is reflected by the good linear fit between Q and Rn above the crown. Meteorological conditions seem to have some influence on this relationship, as suggested by the differences on the adjusted linear models when total, clear sky, cloudy or rainy data sets were used. The occurrence of rain tends to cause a slight increase in Q in comparison to dry conditions, for identical levels of Rn. Q also shows a strong linear response to solar radiation (Rs), given the dependence of net radiation upon short wave radiation. The same happens with the component of Q received by the top crown surface. However, energy absorbed lat¬erally is much less dependent on Rs, and the inferior component of Q is completely independent of solar radiation. Under conditions when rainfall interception is most likely to occur, i.e. cloudy/rainy days, the daily time-course of Q follows closely those of Rs and Rn, with a maximum of only 75 W m-2 (expressed per unit of leaf area). Similar maximum daily values were observed in other studies with different species but under similar weather conditions. During the night, net radiation should not have a significant spatial variability and Rn around the canopy should be relatively homo¬geneous. Accordingly, night time estimates of Q were obtained from measurements of Rn at fixed positions, which were considered representative of the Rn fluxes around the tree. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007 2007-01-01T00:00:00Z 2011-11-16T18:05:34Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.11/950 |
url |
http://hdl.handle.net/10400.11/950 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
EGU |
publisher.none.fl_str_mv |
EGU |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833599337566830592 |