Mining Big Data in statistical systems of the monetary financial institutions (MFIs)

Bibliographic Details
Main Author: Ashofteh, Afshin
Publication Date: 2018
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/98453
Summary: Ashofteh, A. (2018). Mining Big Data in statistical systems of the monetary financial institutions (MFIs). Congress UPV. 2nd International Conference on Advanced Research Methods and Analytics (CARMA 2018) (Abstratcts). Editorial Universitat Politècnica de València . ISBN: 978-84-9048-689-4 (print version). DOI: http://dx.doi.org/10.4995/CARMA2018.2018.8742
id RCAP_4e4dc6d7ea7ce17ef55e0680c621e4d3
oai_identifier_str oai:run.unl.pt:10362/98453
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Mining Big Data in statistical systems of the monetary financial institutions (MFIs)Big DataArtificial dataImbalanced classificationMonetary financial institutionsAshofteh, A. (2018). Mining Big Data in statistical systems of the monetary financial institutions (MFIs). Congress UPV. 2nd International Conference on Advanced Research Methods and Analytics (CARMA 2018) (Abstratcts). Editorial Universitat Politècnica de València . ISBN: 978-84-9048-689-4 (print version). DOI: http://dx.doi.org/10.4995/CARMA2018.2018.8742The financial crisis prompted a number of statutory and supervisory initiatives that require great disclosure by financial firms of their data to a central system. Recently, core banking and payment systems data as a main big data sources of monetary financial Institutions (MFI’s) have been used to monitor different kind of risks, however distress situations for MFI’s are relatively infrequent events and as the same time under the pressure of rapid changes in compliance and rules. The very limited information for distinguishing dynamic fraud from genuine customer or monetary and financial institution behavior in an extremely sparse and imbalanced big data environment with probable change points in data distribution is making the instant and effective fraud detection and banking Big Data management more and more difficult and challenging. Being still a recent discipline, few research has been conducted on imbalanced classification for Big Data. The reasons behind this are mainly the difficulties in adapting standard techniques to the MapReduce programming style and inner problems of imbalanced data, namely lack of data, small disjuncts and data distribution changes. These are accentuated during the data partitioning to fit the MapReduce programming style and data mining process. This paper is going to summarize some technical problems of imbalanced data and artificial data for the adjustment of big data for MFI’s and to investigate how it can be made ready for implementationEditorial Universitat Politècnica de ValènciaNOVA Information Management School (NOVA IMS)RUNAshofteh, Afshin2020-05-28T22:30:59Z20182018-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion1application/pdfhttp://hdl.handle.net/10362/98453eng978-84-9048-689-4PURE: 18351799https://doi.org/10.4995/CARMA2018.2018.8742info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:45:39Zoai:run.unl.pt:10362/98453Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:17:08.033899Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Mining Big Data in statistical systems of the monetary financial institutions (MFIs)
title Mining Big Data in statistical systems of the monetary financial institutions (MFIs)
spellingShingle Mining Big Data in statistical systems of the monetary financial institutions (MFIs)
Ashofteh, Afshin
Big Data
Artificial data
Imbalanced classification
Monetary financial institutions
title_short Mining Big Data in statistical systems of the monetary financial institutions (MFIs)
title_full Mining Big Data in statistical systems of the monetary financial institutions (MFIs)
title_fullStr Mining Big Data in statistical systems of the monetary financial institutions (MFIs)
title_full_unstemmed Mining Big Data in statistical systems of the monetary financial institutions (MFIs)
title_sort Mining Big Data in statistical systems of the monetary financial institutions (MFIs)
author Ashofteh, Afshin
author_facet Ashofteh, Afshin
author_role author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
RUN
dc.contributor.author.fl_str_mv Ashofteh, Afshin
dc.subject.por.fl_str_mv Big Data
Artificial data
Imbalanced classification
Monetary financial institutions
topic Big Data
Artificial data
Imbalanced classification
Monetary financial institutions
description Ashofteh, A. (2018). Mining Big Data in statistical systems of the monetary financial institutions (MFIs). Congress UPV. 2nd International Conference on Advanced Research Methods and Analytics (CARMA 2018) (Abstratcts). Editorial Universitat Politècnica de València . ISBN: 978-84-9048-689-4 (print version). DOI: http://dx.doi.org/10.4995/CARMA2018.2018.8742
publishDate 2018
dc.date.none.fl_str_mv 2018
2018-01-01T00:00:00Z
2020-05-28T22:30:59Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/98453
url http://hdl.handle.net/10362/98453
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-84-9048-689-4
PURE: 18351799
https://doi.org/10.4995/CARMA2018.2018.8742
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1
application/pdf
dc.publisher.none.fl_str_mv Editorial Universitat Politècnica de València
publisher.none.fl_str_mv Editorial Universitat Politècnica de València
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596579317022720